|
import sys |
|
|
|
import numpy as np |
|
import torch |
|
|
|
import scipy.sparse |
|
|
|
from chemical import * |
|
from scoring import * |
|
|
|
def th_ang_v(ab,bc,eps:float=1e-8): |
|
def th_norm(x,eps:float=1e-8): |
|
return x.square().sum(-1,keepdim=True).add(eps).sqrt() |
|
def th_N(x,alpha:float=0): |
|
return x/th_norm(x).add(alpha) |
|
ab, bc = th_N(ab),th_N(bc) |
|
cos_angle = torch.clamp( (ab*bc).sum(-1), -1, 1) |
|
sin_angle = torch.sqrt(1-cos_angle.square() + eps) |
|
dih = torch.stack((cos_angle,sin_angle),-1) |
|
return dih |
|
|
|
def th_dih_v(ab,bc,cd): |
|
def th_cross(a,b): |
|
a,b = torch.broadcast_tensors(a,b) |
|
return torch.cross(a,b, dim=-1) |
|
def th_norm(x,eps:float=1e-8): |
|
return x.square().sum(-1,keepdim=True).add(eps).sqrt() |
|
def th_N(x,alpha:float=0): |
|
return x/th_norm(x).add(alpha) |
|
|
|
ab, bc, cd = th_N(ab),th_N(bc),th_N(cd) |
|
n1 = th_N( th_cross(ab,bc) ) |
|
n2 = th_N( th_cross(bc,cd) ) |
|
sin_angle = (th_cross(n1,bc)*n2).sum(-1) |
|
cos_angle = (n1*n2).sum(-1) |
|
dih = torch.stack((cos_angle,sin_angle),-1) |
|
return dih |
|
|
|
def th_dih(a,b,c,d): |
|
return th_dih_v(a-b,b-c,c-d) |
|
|
|
|
|
|
|
def rigid_from_3_points(N, Ca, C, non_ideal=False, eps=1e-8): |
|
|
|
|
|
B,L = N.shape[:2] |
|
|
|
v1 = C-Ca |
|
v2 = N-Ca |
|
e1 = v1/(torch.norm(v1, dim=-1, keepdim=True)+eps) |
|
u2 = v2-(torch.einsum('bli, bli -> bl', e1, v2)[...,None]*e1) |
|
e2 = u2/(torch.norm(u2, dim=-1, keepdim=True)+eps) |
|
e3 = torch.cross(e1, e2, dim=-1) |
|
R = torch.cat([e1[...,None], e2[...,None], e3[...,None]], axis=-1) |
|
|
|
if non_ideal: |
|
v2 = v2/(torch.norm(v2, dim=-1, keepdim=True)+eps) |
|
cosref = torch.sum(e1*v2, dim=-1) |
|
costgt = cos_ideal_NCAC.item() |
|
cos2del = torch.clamp( cosref*costgt + torch.sqrt((1-cosref*cosref)*(1-costgt*costgt)+eps), min=-1.0, max=1.0 ) |
|
cosdel = torch.sqrt(0.5*(1+cos2del)+eps) |
|
sindel = torch.sign(costgt-cosref) * torch.sqrt(1-0.5*(1+cos2del)+eps) |
|
Rp = torch.eye(3, device=N.device).repeat(B,L,1,1) |
|
Rp[:,:,0,0] = cosdel |
|
Rp[:,:,0,1] = -sindel |
|
Rp[:,:,1,0] = sindel |
|
Rp[:,:,1,1] = cosdel |
|
|
|
R = torch.einsum('blij,bljk->blik', R,Rp) |
|
|
|
return R, Ca |
|
|
|
def get_tor_mask(seq, torsion_indices, mask_in=None): |
|
B,L = seq.shape[:2] |
|
tors_mask = torch.ones((B,L,10), dtype=torch.bool, device=seq.device) |
|
tors_mask[...,3:7] = torsion_indices[seq,:,-1] > 0 |
|
tors_mask[:,0,1] = False |
|
tors_mask[:,-1,0] = False |
|
|
|
|
|
tors_mask[:,:,7] = seq!=aa2num['GLY'] |
|
tors_mask[:,:,8] = seq!=aa2num['GLY'] |
|
tors_mask[:,:,9] = torch.logical_and( seq!=aa2num['GLY'], seq!=aa2num['ALA'] ) |
|
tors_mask[:,:,9] = torch.logical_and( tors_mask[:,:,9], seq!=aa2num['UNK'] ) |
|
tors_mask[:,:,9] = torch.logical_and( tors_mask[:,:,9], seq!=aa2num['MAS'] ) |
|
|
|
if mask_in != None: |
|
|
|
|
|
ti0 = torch.gather(mask_in,2,torsion_indices[seq,:,0]) |
|
ti1 = torch.gather(mask_in,2,torsion_indices[seq,:,1]) |
|
ti2 = torch.gather(mask_in,2,torsion_indices[seq,:,2]) |
|
ti3 = torch.gather(mask_in,2,torsion_indices[seq,:,3]) |
|
is_valid = torch.stack((ti0, ti1, ti2, ti3), dim=-2).all(dim=-1) |
|
tors_mask[...,3:7] = torch.logical_and(tors_mask[...,3:7], is_valid) |
|
tors_mask[:,:,7] = torch.logical_and(tors_mask[:,:,7], mask_in[:,:,4]) |
|
tors_mask[:,:,8] = torch.logical_and(tors_mask[:,:,8], mask_in[:,:,4]) |
|
tors_mask[:,:,9] = torch.logical_and(tors_mask[:,:,9], mask_in[:,:,5]) |
|
|
|
return tors_mask |
|
|
|
def get_torsions(xyz_in, seq, torsion_indices, torsion_can_flip, ref_angles, mask_in=None): |
|
B,L = xyz_in.shape[:2] |
|
|
|
tors_mask = get_tor_mask(seq, torsion_indices, mask_in) |
|
|
|
|
|
tors_planar = torch.zeros((B, L, 10), dtype=torch.bool, device=xyz_in.device) |
|
tors_planar[:,:,5] = seq == aa2num['TYR'] |
|
|
|
|
|
xyz = xyz_in.clone() |
|
Rs, Ts = rigid_from_3_points(xyz[...,0,:],xyz[...,1,:],xyz[...,2,:]) |
|
Nideal = torch.tensor([-0.5272, 1.3593, 0.000], device=xyz_in.device) |
|
Cideal = torch.tensor([1.5233, 0.000, 0.000], device=xyz_in.device) |
|
xyz[...,0,:] = torch.einsum('brij,j->bri', Rs, Nideal) + Ts |
|
xyz[...,2,:] = torch.einsum('brij,j->bri', Rs, Cideal) + Ts |
|
|
|
torsions = torch.zeros( (B,L,10,2), device=xyz.device ) |
|
|
|
torsions[:,0,1,0] = 1.0 |
|
torsions[:,-1,0,0] = 1.0 |
|
|
|
|
|
torsions[:,:-1,0,:] = th_dih(xyz[:,:-1,1,:],xyz[:,:-1,2,:],xyz[:,1:,0,:],xyz[:,1:,1,:]) |
|
|
|
torsions[:,1:,1,:] = th_dih(xyz[:,:-1,2,:],xyz[:,1:,0,:],xyz[:,1:,1,:],xyz[:,1:,2,:]) |
|
|
|
torsions[:,:,2,:] = -1 * th_dih(xyz[:,:,0,:],xyz[:,:,1,:],xyz[:,:,2,:],xyz[:,:,3,:]) |
|
|
|
|
|
ti0 = torch.gather(xyz,2,torsion_indices[seq,:,0,None].repeat(1,1,1,3)) |
|
ti1 = torch.gather(xyz,2,torsion_indices[seq,:,1,None].repeat(1,1,1,3)) |
|
ti2 = torch.gather(xyz,2,torsion_indices[seq,:,2,None].repeat(1,1,1,3)) |
|
ti3 = torch.gather(xyz,2,torsion_indices[seq,:,3,None].repeat(1,1,1,3)) |
|
torsions[:,:,3:7,:] = th_dih(ti0,ti1,ti2,ti3) |
|
|
|
|
|
NC = 0.5*( xyz[:,:,0,:3] + xyz[:,:,2,:3] ) |
|
CA = xyz[:,:,1,:3] |
|
CB = xyz[:,:,4,:3] |
|
t = th_ang_v(CB-CA,NC-CA) |
|
t0 = ref_angles[seq][...,0,:] |
|
torsions[:,:,7,:] = torch.stack( |
|
(torch.sum(t*t0,dim=-1),t[...,0]*t0[...,1]-t[...,1]*t0[...,0]), |
|
dim=-1 ) |
|
|
|
|
|
NCCA = NC-CA |
|
NCp = xyz[:,:,2,:3] - xyz[:,:,0,:3] |
|
NCpp = NCp - torch.sum(NCp*NCCA, dim=-1, keepdim=True)/ torch.sum(NCCA*NCCA, dim=-1, keepdim=True) * NCCA |
|
t = th_ang_v(CB-CA,NCpp) |
|
t0 = ref_angles[seq][...,1,:] |
|
torsions[:,:,8,:] = torch.stack( |
|
(torch.sum(t*t0,dim=-1),t[...,0]*t0[...,1]-t[...,1]*t0[...,0]), |
|
dim=-1 ) |
|
|
|
|
|
CG = xyz[:,:,5,:3] |
|
t = th_ang_v(CG-CB,CA-CB) |
|
t0 = ref_angles[seq][...,2,:] |
|
torsions[:,:,9,:] = torch.stack( |
|
(torch.sum(t*t0,dim=-1),t[...,0]*t0[...,1]-t[...,1]*t0[...,0]), |
|
dim=-1 ) |
|
|
|
mask0 = torch.isnan(torsions[...,0]).nonzero() |
|
mask1 = torch.isnan(torsions[...,1]).nonzero() |
|
torsions[mask0[:,0],mask0[:,1],mask0[:,2],0] = 1.0 |
|
torsions[mask1[:,0],mask1[:,1],mask1[:,2],1] = 0.0 |
|
|
|
|
|
torsions_alt = torsions.clone() |
|
torsions_alt[torsion_can_flip[seq,:]] *= -1 |
|
|
|
return torsions, torsions_alt, tors_mask, tors_planar |
|
|
|
def get_tips(xyz, seq): |
|
B,L = xyz.shape[:2] |
|
|
|
xyz_tips = torch.gather(xyz, 2, tip_indices.to(xyz.device)[seq][:,:,None,None].expand(-1,-1,-1,3)).reshape(B, L, 3) |
|
mask = ~(torch.isnan(xyz_tips[:,:,0])) |
|
if torch.isnan(xyz_tips).any(): |
|
|
|
N = xyz[:,:,0] |
|
Ca = xyz[:,:,1] |
|
C = xyz[:,:,2] |
|
|
|
|
|
b = Ca - N |
|
c = C - Ca |
|
a = torch.cross(b, c, dim=-1) |
|
Cb = -0.58273431*a + 0.56802827*b - 0.54067466*c + Ca |
|
|
|
xyz_tips = torch.where(torch.isnan(xyz_tips), Cb, xyz_tips) |
|
return xyz_tips, mask |
|
|
|
|
|
def make_frame(X, Y): |
|
Xn = X / torch.linalg.norm(X) |
|
Y = Y - torch.dot(Y, Xn) * Xn |
|
Yn = Y / torch.linalg.norm(Y) |
|
Z = torch.cross(Xn,Yn) |
|
Zn = Z / torch.linalg.norm(Z) |
|
|
|
return torch.stack((Xn,Yn,Zn), dim=-1) |
|
|
|
def cross_product_matrix(u): |
|
B, L = u.shape[:2] |
|
matrix = torch.zeros((B, L, 3, 3), device=u.device) |
|
matrix[:,:,0,1] = -u[...,2] |
|
matrix[:,:,0,2] = u[...,1] |
|
matrix[:,:,1,0] = u[...,2] |
|
matrix[:,:,1,2] = -u[...,0] |
|
matrix[:,:,2,0] = -u[...,1] |
|
matrix[:,:,2,1] = u[...,0] |
|
return matrix |
|
|
|
|
|
def writepdb(filename, atoms, seq, idx_pdb=None, bfacts=None): |
|
f = open(filename,"w") |
|
ctr = 1 |
|
scpu = seq.cpu().squeeze() |
|
atomscpu = atoms.cpu().squeeze() |
|
if bfacts is None: |
|
bfacts = torch.zeros(atomscpu.shape[0]) |
|
if idx_pdb is None: |
|
idx_pdb = 1 + torch.arange(atomscpu.shape[0]) |
|
|
|
Bfacts = torch.clamp( bfacts.cpu(), 0, 1) |
|
for i,s in enumerate(scpu): |
|
if (len(atomscpu.shape)==2): |
|
f.write ("%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n"%( |
|
"ATOM", ctr, " CA ", num2aa[s], |
|
"A", idx_pdb[i], atomscpu[i,0], atomscpu[i,1], atomscpu[i,2], |
|
1.0, Bfacts[i] ) ) |
|
ctr += 1 |
|
elif atomscpu.shape[1]==3: |
|
for j,atm_j in enumerate([" N "," CA "," C "]): |
|
f.write ("%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n"%( |
|
"ATOM", ctr, atm_j, num2aa[s], |
|
"A", idx_pdb[i], atomscpu[i,j,0], atomscpu[i,j,1], atomscpu[i,j,2], |
|
1.0, Bfacts[i] ) ) |
|
ctr += 1 |
|
else: |
|
natoms = atomscpu.shape[1] |
|
if (natoms!=14 and natoms!=27): |
|
print ('bad size!', atoms.shape) |
|
assert(False) |
|
atms = aa2long[s] |
|
|
|
if (s==8 and torch.linalg.norm( atomscpu[i,9,:]-atomscpu[i,5,:] ) < 1.7): |
|
atms = ( |
|
" N "," CA "," C "," O "," CB "," CG "," NE2"," CD2"," CE1"," ND1", |
|
None, None, None, None," H "," HA ","1HB ","2HB "," HD2"," HE1", |
|
" HD1", None, None, None, None, None, None) |
|
|
|
for j,atm_j in enumerate(atms): |
|
if (j<natoms and atm_j is not None): |
|
f.write ("%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n"%( |
|
"ATOM", ctr, atm_j, num2aa[s], |
|
"A", idx_pdb[i], atomscpu[i,j,0], atomscpu[i,j,1], atomscpu[i,j,2], |
|
1.0, Bfacts[i] ) ) |
|
ctr += 1 |
|
|
|
|
|
|
|
tip_indices = torch.full((22,), 0) |
|
for i in range(22): |
|
tip_atm = aa2tip[i] |
|
atm_long = aa2long[i] |
|
tip_indices[i] = atm_long.index(tip_atm) |
|
|
|
|
|
torsion_indices = torch.full((22,4,4),0) |
|
torsion_can_flip = torch.full((22,10),False,dtype=torch.bool) |
|
for i in range(22): |
|
i_l, i_a = aa2long[i], aa2longalt[i] |
|
for j in range(4): |
|
if torsions[i][j] is None: |
|
continue |
|
for k in range(4): |
|
a = torsions[i][j][k] |
|
torsion_indices[i,j,k] = i_l.index(a) |
|
if (i_l.index(a) != i_a.index(a)): |
|
torsion_can_flip[i,3+j] = True |
|
|
|
torsion_can_flip[8,4]=False |
|
|
|
|
|
allatom_mask = torch.zeros((22,27), dtype=torch.bool) |
|
long2alt = torch.zeros((22,27), dtype=torch.long) |
|
for i in range(22): |
|
i_l, i_lalt = aa2long[i], aa2longalt[i] |
|
for j,a in enumerate(i_l): |
|
if (a is None): |
|
long2alt[i,j] = j |
|
else: |
|
long2alt[i,j] = i_lalt.index(a) |
|
allatom_mask[i,j] = True |
|
|
|
|
|
num_bonds = torch.zeros((22,27,27), dtype=torch.long) |
|
for i in range(22): |
|
num_bonds_i = np.zeros((27,27)) |
|
for (bnamei,bnamej) in aabonds[i]: |
|
bi,bj = aa2long[i].index(bnamei),aa2long[i].index(bnamej) |
|
num_bonds_i[bi,bj] = 1 |
|
num_bonds_i = scipy.sparse.csgraph.shortest_path (num_bonds_i,directed=False) |
|
num_bonds_i[num_bonds_i>=4] = 4 |
|
num_bonds[i,...] = torch.tensor(num_bonds_i) |
|
|
|
|
|
|
|
ljlk_parameters = torch.zeros((22,27,5), dtype=torch.float) |
|
lj_correction_parameters = torch.zeros((22,27,4), dtype=bool) |
|
for i in range(22): |
|
for j,a in enumerate(aa2type[i]): |
|
if (a is not None): |
|
ljlk_parameters[i,j,:] = torch.tensor( type2ljlk[a] ) |
|
lj_correction_parameters[i,j,0] = (type2hb[a]==HbAtom.DO)+(type2hb[a]==HbAtom.DA) |
|
lj_correction_parameters[i,j,1] = (type2hb[a]==HbAtom.AC)+(type2hb[a]==HbAtom.DA) |
|
lj_correction_parameters[i,j,2] = (type2hb[a]==HbAtom.HP) |
|
lj_correction_parameters[i,j,3] = (a=="SH1" or a=="HS") |
|
|
|
|
|
def donorHs(D,bonds,atoms): |
|
dHs = [] |
|
for (i,j) in bonds: |
|
if (i==D): |
|
idx_j = atoms.index(j) |
|
if (idx_j>=14): |
|
dHs.append(idx_j) |
|
if (j==D): |
|
idx_i = atoms.index(i) |
|
if (idx_i>=14): |
|
dHs.append(idx_i) |
|
assert (len(dHs)>0) |
|
return dHs |
|
|
|
def acceptorBB0(A,hyb,bonds,atoms): |
|
if (hyb == HbHybType.SP2): |
|
for (i,j) in bonds: |
|
if (i==A): |
|
B = atoms.index(j) |
|
if (B<14): |
|
break |
|
if (j==A): |
|
B = atoms.index(i) |
|
if (B<14): |
|
break |
|
for (i,j) in bonds: |
|
if (i==atoms[B]): |
|
B0 = atoms.index(j) |
|
if (B0<14): |
|
break |
|
if (j==atoms[B]): |
|
B0 = atoms.index(i) |
|
if (B0<14): |
|
break |
|
elif (hyb == HbHybType.SP3 or hyb == HbHybType.RING): |
|
for (i,j) in bonds: |
|
if (i==A): |
|
B = atoms.index(j) |
|
if (B<14): |
|
break |
|
if (j==A): |
|
B = atoms.index(i) |
|
if (B<14): |
|
break |
|
for (i,j) in bonds: |
|
if (i==A and j!=atoms[B]): |
|
B0 = atoms.index(j) |
|
break |
|
if (j==A and i!=atoms[B]): |
|
B0 = atoms.index(i) |
|
break |
|
|
|
return B,B0 |
|
|
|
|
|
hbtypes = torch.full((22,27,3),-1, dtype=torch.long) |
|
hbbaseatoms = torch.full((22,27,2),-1, dtype=torch.long) |
|
hbpolys = torch.zeros((HbDonType.NTYPES,HbAccType.NTYPES,3,15)) |
|
|
|
for i in range(22): |
|
for j,a in enumerate(aa2type[i]): |
|
if (a in type2dontype): |
|
j_hs = donorHs(aa2long[i][j],aabonds[i],aa2long[i]) |
|
for j_h in j_hs: |
|
hbtypes[i,j_h,0] = type2dontype[a] |
|
hbbaseatoms[i,j_h,0] = j |
|
if (a in type2acctype): |
|
j_b, j_b0 = acceptorBB0(aa2long[i][j],type2hybtype[a],aabonds[i],aa2long[i]) |
|
hbtypes[i,j,1] = type2acctype[a] |
|
hbtypes[i,j,2] = type2hybtype[a] |
|
hbbaseatoms[i,j,0] = j_b |
|
hbbaseatoms[i,j,1] = j_b0 |
|
|
|
for i in range(HbDonType.NTYPES): |
|
for j in range(HbAccType.NTYPES): |
|
weight = dontype2wt[i]*acctype2wt[j] |
|
|
|
pdist,pbah,pahd = hbtypepair2poly[(i,j)] |
|
xrange,yrange,coeffs = hbpolytype2coeffs[pdist] |
|
hbpolys[i,j,0,0] = weight |
|
hbpolys[i,j,0,1:3] = torch.tensor(xrange) |
|
hbpolys[i,j,0,3:5] = torch.tensor(yrange) |
|
hbpolys[i,j,0,5:] = torch.tensor(coeffs) |
|
xrange,yrange,coeffs = hbpolytype2coeffs[pahd] |
|
hbpolys[i,j,1,0] = weight |
|
hbpolys[i,j,1,1:3] = torch.tensor(xrange) |
|
hbpolys[i,j,1,3:5] = torch.tensor(yrange) |
|
hbpolys[i,j,1,5:] = torch.tensor(coeffs) |
|
xrange,yrange,coeffs = hbpolytype2coeffs[pbah] |
|
hbpolys[i,j,2,0] = weight |
|
hbpolys[i,j,2,1:3] = torch.tensor(xrange) |
|
hbpolys[i,j,2,3:5] = torch.tensor(yrange) |
|
hbpolys[i,j,2,5:] = torch.tensor(coeffs) |
|
|
|
|
|
base_indices = torch.full((22,27),0, dtype=torch.long) |
|
xyzs_in_base_frame = torch.ones((22,27,4)) |
|
RTs_by_torsion = torch.eye(4).repeat(22,7,1,1) |
|
reference_angles = torch.ones((22,3,2)) |
|
|
|
for i in range(22): |
|
i_l = aa2long[i] |
|
for name, base, coords in ideal_coords[i]: |
|
idx = i_l.index(name) |
|
base_indices[i,idx] = base |
|
xyzs_in_base_frame[i,idx,:3] = torch.tensor(coords) |
|
|
|
|
|
RTs_by_torsion[i,0,:3,:3] = torch.eye(3) |
|
RTs_by_torsion[i,0,:3,3] = torch.zeros(3) |
|
|
|
|
|
RTs_by_torsion[i,1,:3,:3] = make_frame( |
|
xyzs_in_base_frame[i,0,:3] - xyzs_in_base_frame[i,1,:3], |
|
torch.tensor([1.,0.,0.]) |
|
) |
|
RTs_by_torsion[i,1,:3,3] = xyzs_in_base_frame[i,0,:3] |
|
|
|
|
|
RTs_by_torsion[i,2,:3,:3] = make_frame( |
|
xyzs_in_base_frame[i,2,:3] - xyzs_in_base_frame[i,1,:3], |
|
xyzs_in_base_frame[i,1,:3] - xyzs_in_base_frame[i,0,:3] |
|
) |
|
RTs_by_torsion[i,2,:3,3] = xyzs_in_base_frame[i,2,:3] |
|
|
|
|
|
if torsions[i][0] is not None: |
|
a0,a1,a2 = torsion_indices[i,0,0:3] |
|
RTs_by_torsion[i,3,:3,:3] = make_frame( |
|
xyzs_in_base_frame[i,a2,:3]-xyzs_in_base_frame[i,a1,:3], |
|
xyzs_in_base_frame[i,a0,:3]-xyzs_in_base_frame[i,a1,:3], |
|
) |
|
RTs_by_torsion[i,3,:3,3] = xyzs_in_base_frame[i,a2,:3] |
|
|
|
|
|
for j in range(1,4): |
|
if torsions[i][j] is not None: |
|
a2 = torsion_indices[i,j,2] |
|
if ((i==18 and j==2) or (i==8 and j==2)): |
|
a0,a1 = torsion_indices[i,j,0:2] |
|
RTs_by_torsion[i,3+j,:3,:3] = make_frame( |
|
xyzs_in_base_frame[i,a2,:3]-xyzs_in_base_frame[i,a1,:3], |
|
xyzs_in_base_frame[i,a0,:3]-xyzs_in_base_frame[i,a1,:3] ) |
|
else: |
|
RTs_by_torsion[i,3+j,:3,:3] = make_frame( |
|
xyzs_in_base_frame[i,a2,:3], |
|
torch.tensor([-1.,0.,0.]), ) |
|
RTs_by_torsion[i,3+j,:3,3] = xyzs_in_base_frame[i,a2,:3] |
|
|
|
|
|
|
|
NCr = 0.5*(xyzs_in_base_frame[i,0,:3]+xyzs_in_base_frame[i,2,:3]) |
|
CAr = xyzs_in_base_frame[i,1,:3] |
|
CBr = xyzs_in_base_frame[i,4,:3] |
|
CGr = xyzs_in_base_frame[i,5,:3] |
|
reference_angles[i,0,:]=th_ang_v(CBr-CAr,NCr-CAr) |
|
NCp = xyzs_in_base_frame[i,2,:3]-xyzs_in_base_frame[i,0,:3] |
|
NCpp = NCp - torch.dot(NCp,NCr)/ torch.dot(NCr,NCr) * NCr |
|
reference_angles[i,1,:]=th_ang_v(CBr-CAr,NCpp) |
|
reference_angles[i,2,:]=th_ang_v(CGr,torch.tensor([-1.,0.,0.])) |
|
|
|
def get_rmsd(a, b, eps=1e-6): |
|
''' |
|
align crds b to a : always use all alphas |
|
expexted tensor of shape (L,3) |
|
jake's torch adapted version |
|
''' |
|
assert a.shape == b.shape, 'make sure tensors are the same size' |
|
L = a.shape[0] |
|
assert a.shape == torch.Size([L,3]), 'make sure tensors are in format [L,3]' |
|
|
|
|
|
a = a - a.mean(dim=0) |
|
b = b - b.mean(dim=0) |
|
|
|
|
|
C = torch.einsum('kj,ji->ki', torch.transpose(b.type(torch.float32),0,1), a.type(torch.float32)) |
|
|
|
|
|
V, S, W = torch.linalg.svd(C) |
|
|
|
|
|
d = torch.ones([3,3]) |
|
d[:,-1] = torch.sign(torch.linalg.det(V)*torch.linalg.det(W)) |
|
|
|
|
|
U = torch.einsum('kj,ji->ki',(d*V),W) |
|
|
|
|
|
rP = torch.einsum('kj,ji->ki',b.type(torch.float32),U.type(torch.float32)) |
|
|
|
L = rP.shape[0] |
|
rmsd = torch.sqrt(torch.sum((rP-a)*(rP-a), axis=(0,1)) / L + eps) |
|
|
|
return rmsd, U |
|
|
|
|