|
|
|
import numpy as np |
|
import random, copy, torch, geometry, os, sys |
|
from kinematics import xyz_to_t2d |
|
|
|
def parse_range_string(el): |
|
''' Splits string with integer or integer range into start and end ints. ''' |
|
if '-' in el: |
|
s,e = el.split('-') |
|
s,e = int(s), int(e) |
|
else: |
|
s,e = int(el), int(el) |
|
return s,e |
|
|
|
def ranges_to_indexes(range_string): |
|
'''Converts a string containig comma-separated numeric ranges to a list of integers''' |
|
idx = [] |
|
for x in range_string.split(','): |
|
start, end = parse_range_string(x) |
|
idx.extend(np.arange(start, end+1)) |
|
return np.array(idx) |
|
|
|
def parse_contigs(contig_input, pdb_id): |
|
''' |
|
Input: contig start/end by pdb chain and residue number as in the pdb file |
|
ex - B12-17 |
|
Output: corresponding start/end indices of the "features" numpy array (idx0) |
|
''' |
|
contigs = [] |
|
for con in contig_input.split(','): |
|
pdb_ch = con[0] |
|
pdb_s, pdb_e = parse_range_string(con[1:]) |
|
|
|
np_s = pdb_id.index((pdb_ch, pdb_s)) |
|
np_e = pdb_id.index((pdb_ch, pdb_e)) |
|
|
|
contigs.append([np_s, np_e]) |
|
return contigs |
|
|
|
|
|
def mk_feat_hal_and_mappings(hal_2_ref_idx0, pdb_out): |
|
|
|
|
|
|
|
|
|
hal_idx0 = [] |
|
ref_idx0 = [] |
|
|
|
for hal, ref in enumerate(hal_2_ref_idx0): |
|
if ref is not None: |
|
hal_idx0.append(hal) |
|
ref_idx0.append(ref) |
|
|
|
hal_idx0 = np.array(hal_idx0, dtype=int) |
|
ref_idx0 = np.array(ref_idx0, dtype=int) |
|
|
|
|
|
hal_len = len(hal_2_ref_idx0) |
|
if 'feat' in pdb_out: |
|
d_feat = pdb_out['feat'].shape[3:] |
|
|
|
feat_hal = np.zeros((1, hal_len, hal_len) + d_feat) |
|
feat_ref = pdb_out['feat'] |
|
|
|
feat_hal[:, hal_idx0[:,None], hal_idx0[None,:]] = feat_ref[:, ref_idx0[:,None], ref_idx0[None,:]] |
|
else: |
|
feat_hal = None |
|
|
|
|
|
hal_2_ref_idx0 = np.array(hal_2_ref_idx0, dtype=np.float32) |
|
mask_1d = (~np.isnan(hal_2_ref_idx0)).astype(float) |
|
mask_1d = mask_1d[None] |
|
|
|
|
|
|
|
|
|
|
|
mappings = { |
|
'con_hal_idx0': hal_idx0.tolist(), |
|
'con_ref_idx0': ref_idx0.tolist(), |
|
'con_hal_pdb_idx': [('A',i+1) for i in hal_idx0], |
|
'con_ref_pdb_idx': [pdb_out['pdb_idx'][i] for i in ref_idx0], |
|
'mask_1d': mask_1d, |
|
} |
|
|
|
return feat_hal, mappings |
|
|
|
def scatter_feats(template_mask, feat_1d_ref=None, feat_2d_ref=None, pdb_idx=None): |
|
''' |
|
Scatters 1D and/or 2D reference features according to mappings in hal_2_ref_idx0 |
|
|
|
Inputs |
|
---------- |
|
hal_2_ref_idx0: (list; length=L_hal) |
|
List mapping hal_idx0 positions to ref_idx0 positions. |
|
"None" used for indices that do not map to ref. |
|
ex: [None, None, 3, 4, 5, None, None, None, 34, 35, 36] |
|
feat_1d_ref: (np.array; (batch, L_ref, ...)) |
|
1D refence features to scatter |
|
feat_1d_ref: (np.array; (batch, L_ref, L_ref, ...)) |
|
pdb_idx: (list) |
|
List of pdb chain and residue numbers, in the order that pdb features were read/parsed. |
|
|
|
Outputs |
|
---------- |
|
feat_1d_hal: (np.array, (batch, L_hal, ...)) |
|
Scattered 1d reference features. "None" mappings are 0. |
|
feat_2d_hal: (np.array, (batch, L_hal, L_hal, ...)) |
|
Scattered 2d reference features. "None" mappings are 0. |
|
mappings: (dict) |
|
Keeps track of corresponding possitions in ref and hal proteins. |
|
''' |
|
hal_2_ref_idx0, _ = contigs.sample_mask(template_mask, pdb_idx) |
|
out = {} |
|
|
|
|
|
hal_idx0 = [] |
|
ref_idx0 = [] |
|
hal_len = len(hal_2_ref_idx0) |
|
|
|
for hal, ref in enumerate(hal_2_ref_idx0): |
|
if ref is not None: |
|
hal_idx0.append(hal) |
|
ref_idx0.append(ref) |
|
|
|
hal_idx0 = np.array(hal_idx0, dtype=int) |
|
ref_idx0 = np.array(ref_idx0, dtype=int) |
|
|
|
|
|
hal_2_ref_idx0 = np.array(hal_2_ref_idx0, dtype=np.float32) |
|
mask_1d = (~np.isnan(hal_2_ref_idx0)).astype(float) |
|
mask_1d = mask_1d[None] |
|
|
|
|
|
if feat_2d_ref is not None: |
|
B = feat_2d_ref.shape[0] |
|
d_feat = feat_2d_ref.shape[3:] |
|
feat_2d_hal = np.zeros((B, hal_len, hal_len)+d_feat) |
|
feat_2d_hal[:, hal_idx0[:,None], hal_idx0[None,:]] = feat_2d_ref[:, ref_idx0[:,None], ref_idx0[None,:]] |
|
out['feat_2d_hal'] = feat_2d_hal |
|
|
|
|
|
if feat_1d_ref is not None: |
|
B = feat_1d_ref.shape[0] |
|
d_feat = feat_1d_ref.shape[2:] |
|
feat_1d_hal = np.zeros((B, hal_len)+d_feat) |
|
feat_1d_hal[:, hal_idx0] = feat_1d_ref[:, ref_idx0] |
|
out['feat_1d_hal'] = feat_1d_hal |
|
|
|
|
|
mappings = { |
|
'con_hal_idx0': hal_idx0.tolist(), |
|
'con_ref_idx0': ref_idx0.tolist(), |
|
'mask_1d': mask_1d, |
|
} |
|
|
|
if pdb_idx is not None: |
|
mappings.update({ |
|
'con_hal_pdb_idx': [('A',i+1) for i in hal_idx0], |
|
'con_ref_pdb_idx': [pdb_idx[i] for i in ref_idx0], |
|
}) |
|
|
|
out['mappings'] = mappings |
|
|
|
return out |
|
|
|
def scatter_contigs(contigs, pdb_out, L_range, keep_order=False, min_gap=0): |
|
''' |
|
Randomly places contigs in a protein within the length range. |
|
|
|
Inputs |
|
Contig: A continuous range of residues from the pdb. |
|
Inclusive of the begining and end |
|
Must start with the chain number. Comma separated |
|
ex: B6-11,A12-19 |
|
pdb_out: dictionary from the prep_input function |
|
L_range: String range of possible lengths. |
|
ex: 90-110 |
|
ex: 70 |
|
keep_order: keep contigs in the provided order or randomly permute |
|
min_gap: minimum number of amino acids separating contigs |
|
|
|
Outputs |
|
feat_hal: target pdb features to hallucinate |
|
mappings: dictionary of ways to convert from the hallucinated protein |
|
to the reference protein |
|
|
|
''' |
|
|
|
ref_pdb_2_idx0 = {pdb_idx:i for i, pdb_idx in enumerate(pdb_out['pdb_idx'])} |
|
|
|
|
|
|
|
|
|
|
|
contigs = contigs.split(',') |
|
|
|
if not keep_order: |
|
random.shuffle(contigs) |
|
|
|
|
|
contigs_ref_idx0 = [] |
|
for con in contigs: |
|
chain = con[0] |
|
s, e = parse_range_string(con[1:]) |
|
contigs_ref_idx0.append( [ref_pdb_2_idx0[(chain, i)] for i in range(s, e+1)] ) |
|
|
|
|
|
for i in range(len(contigs_ref_idx0) - 1): |
|
contigs_ref_idx0[i] += [None] * min_gap |
|
|
|
|
|
L_low, L_high = parse_range_string(L_range) |
|
L_hal = np.random.randint(L_low, L_high+1) |
|
|
|
L_con = 0 |
|
for con in contigs_ref_idx0: |
|
L_con += len(con) |
|
|
|
L_gaps = L_hal - L_con |
|
|
|
if L_gaps <= 1: |
|
print("Error: The protein isn't long enough to incorporate all the contigs." |
|
"Consider reduce the min_gap or increasing L_range") |
|
return |
|
|
|
|
|
hal_2_ref_idx0 = np.array([None] * L_gaps, dtype=float) |
|
n_contigs = len(contigs_ref_idx0) |
|
insertion_idxs = np.random.randint(L_gaps + 1, size=n_contigs) |
|
insertion_idxs.sort() |
|
|
|
for idx, con in zip(insertion_idxs[::-1], contigs_ref_idx0[::-1]): |
|
hal_2_ref_idx0 = np.insert(hal_2_ref_idx0, idx, con) |
|
|
|
|
|
hal_2_ref_idx0 = [int(el) if ~np.isnan(el) else None for el in hal_2_ref_idx0] |
|
feat_hal, mappings = mk_feat_hal_and_mappings(hal_2_ref_idx0, pdb_out) |
|
|
|
|
|
contig_positive = np.array(hal_2_ref_idx0) != None |
|
boundaries = np.where(np.diff(contig_positive))[0] |
|
start_idx0 = np.concatenate([np.array([0]), boundaries+1]) |
|
end_idx0 = np.concatenate([boundaries, np.array([contig_positive.shape[0]])-1]) |
|
lengths = end_idx0 - start_idx0 + 1 |
|
is_contig = contig_positive[start_idx0] |
|
|
|
sampled_mask = [] |
|
con_counter = 0 |
|
|
|
for i, is_con in enumerate(is_contig): |
|
if is_con: |
|
sampled_mask.append(contigs[con_counter]) |
|
con_counter += 1 |
|
else: |
|
len_gap = lengths[i] |
|
sampled_mask.append(f'{len_gap}-{len_gap}') |
|
|
|
sampled_mask = ','.join(sampled_mask) |
|
mappings['sampled_mask'] = sampled_mask |
|
|
|
return feat_hal, mappings |
|
|
|
def get_receptor_contig(ref_pdb_idx): |
|
rec_pdb_idx = [idx for idx in ref_pdb_idx if idx[0]=='R'] |
|
return SampledMask.contract(rec_pdb_idx) |
|
|
|
def mk_con_to_set(mask, set_id=None, args=None, ref_pdb_idx=None): |
|
''' |
|
Maps a mask or list of contigs to a set_id. If no set_id is provided, it treats |
|
everything as set 0. |
|
|
|
Input |
|
----------- |
|
mask (str): Mask or list of contigs. Ex: 3,B6-11,12,A12-19,9 or Ex: B6-11,A12-19 |
|
ref_pdb_idx (List(ch, res)): pdb idxs of the reference pdb. Ex: [(A, 2), (A, 3), ...] |
|
args: Arguments object. Must have args.receptor |
|
set_id (list): List of integers. Length must match contigs in mask. Ex: [0,1] |
|
|
|
Output |
|
----------- |
|
con_to_set (dict): Maps str of contig to integer |
|
''' |
|
|
|
|
|
cons = [l for l in mask.split(',') if l[0].isalpha()] |
|
|
|
|
|
if set_id is None: |
|
set_id = [0] * len(cons) |
|
|
|
con_to_set = dict(zip(cons, set_id)) |
|
|
|
|
|
if args.receptor: |
|
receptor_contig = get_receptor_contig(ref_pdb_idx) |
|
con_to_set.update({receptor_contig: 0}) |
|
|
|
return con_to_set |
|
|
|
def parse_range(_range): |
|
if '-' in _range: |
|
s, e = _range.split('-') |
|
else: |
|
s, e = _range, _range |
|
|
|
return int(s), int(e) |
|
|
|
def parse_contig(contig): |
|
''' |
|
Return the chain, start and end residue in a contig or gap str. |
|
|
|
Ex: |
|
'A4-8' --> 'A', 4, 8 |
|
'A5' --> 'A', 5, 5 |
|
'4-8' --> None, 4, 8 |
|
'A' --> 'A', None, None |
|
''' |
|
|
|
|
|
if contig[0].isalpha(): |
|
ch = contig[0] |
|
if len(contig) > 1: |
|
s, e = parse_range(contig[1:]) |
|
else: |
|
s, e = None, None |
|
|
|
else: |
|
ch = None |
|
s, e = parse_range(contig) |
|
|
|
return ch, s, e |
|
|
|
def mask_as_list(sampled_mask): |
|
''' |
|
Make a length L_hal list, with each position pointing to a ref_pdb_idx (or None) |
|
''' |
|
mask_list = [] |
|
for l in sampled_mask.split(','): |
|
ch, s, e = parse_contig(l) |
|
|
|
if ch is not None: |
|
mask_list += [(ch, idx) for idx in range(s, e+1)] |
|
|
|
else: |
|
mask_list += [None for _ in range(s, e+1)] |
|
|
|
return mask_list |
|
|
|
def mask_subset(sampled_mask, subset): |
|
''' |
|
Returns a 1D boolean array of where a subset of the contig is in the hallucinated protein |
|
|
|
Input |
|
--------- |
|
subset (str): Some chain and residue subset of the contigs. Ex: A10-15 |
|
Can also just pass chain. All contig residues from that chain are selected. Ex: R |
|
|
|
Ouput |
|
--------- |
|
m_1d (np.array): Boolean array where subset appears in the hallucinated protein |
|
|
|
''' |
|
mask_list = mask_as_list(sampled_mask) |
|
m_1d = [] |
|
|
|
ch_subset, s, e = parse_contig(subset) |
|
assert ch_subset.isalpha(), '"Subset" must include a chain reference' |
|
|
|
if (s is None) or (e is None): |
|
s = -np.inf |
|
e = np.inf |
|
|
|
for l in mask_list: |
|
if l is None: |
|
continue |
|
|
|
ch, idx = l |
|
if (ch == ch_subset) and (idx >= s) and (idx <= e): |
|
m_1d.append(True) |
|
else: |
|
m_1d.append(False) |
|
|
|
return np.array(m_1d) |
|
|
|
def mk_cce_and_hal_mask_2d(sampled_mask, con_to_set=None): |
|
''' |
|
Makes masks for ij pixels where the cce and hallucination loss should be applied. |
|
|
|
Inputs |
|
--------------- |
|
sampled_mask (str): String of where contigs should be applied. Ex: 3,B6-11,12,A12-19,9 |
|
cce_cutoff (float): Apply cce loss to cb-cb distances less than this value. Angstroms. |
|
con_to_set (dict): Dictionary mapping the string of a contig (ex: 'B6-11') to an integer. |
|
L_rec (int): Length of the receptor, if hallucinating in the context of the receptor. |
|
|
|
Outputs |
|
--------------- |
|
mask_cce (np.array, (L_hal, L_hal)): Boolean array. True where cce loss should be applied. |
|
mask_hal (np.array, (L_hal, L_hal)): Boolean array. True where hallucination loss should be applied. |
|
''' |
|
if con_to_set is None: |
|
con_to_set = mk_con_to_set(sampled_mask) |
|
|
|
|
|
L_hal, L_max = mask_len(sampled_mask) |
|
assert L_hal == L_max, 'A sampled mask must have gaps of a single length.' |
|
|
|
|
|
m_con = dict() |
|
start_idx = 0 |
|
for l in sampled_mask.split(','): |
|
if l[0].isalpha(): |
|
s, e = parse_range_string(l[1:]) |
|
L_con = e - s + 1 |
|
m = np.zeros(L_hal, dtype=bool) |
|
m[start_idx:start_idx+L_con] = True |
|
|
|
m_con[l] = m |
|
start_idx += L_con |
|
else: |
|
L_gap, _ = parse_range_string(l) |
|
start_idx += L_gap |
|
|
|
|
|
mask_cce = np.zeros((L_hal, L_hal), dtype=bool) |
|
for set_id in set(con_to_set.values()): |
|
|
|
masks = [m_con[k] for k,v in con_to_set.items() if v == set_id] |
|
mask_1D = np.any(masks, axis=0) |
|
update = mask_1D[:,None] * mask_1D[None,:] |
|
mask_cce = np.any([mask_cce, update], axis=0) |
|
|
|
|
|
mask_hal = ~mask_cce |
|
|
|
|
|
mask_cce[np.arange(L_hal), np.arange(L_hal)] = False |
|
mask_hal[np.arange(L_hal), np.arange(L_hal)] = False |
|
|
|
|
|
m_1d_rec = mask_subset(sampled_mask, 'R') |
|
m_2d_rec = m_1d_rec[:, None] * m_1d_rec[None, :] |
|
mask_cce *= ~m_2d_rec |
|
mask_hal *= ~m_2d_rec |
|
|
|
return mask_cce, mask_hal |
|
|
|
|
|
def apply_mask(mask, pdb_out): |
|
''' |
|
Uniformly samples gap lengths, then gathers the ref features |
|
into the target hal features |
|
|
|
Inputs |
|
-------------- |
|
mask: specify the order and ranges of contigs and gaps |
|
Contig - A continuous range of residues from the pdb. |
|
Inclusive of the begining and end |
|
Must start with the chain number |
|
ex: B6-11 |
|
Gap - a gap length or a range of gaps lengths the |
|
model is free to hallucinate |
|
Gap ranges are inclusive of the end |
|
ex: 9-21 |
|
|
|
ex - '3,B6-11,9-21,A36-42,20-30,A12-24,3-6' |
|
|
|
pdb_out: dictionary from the prep_input function |
|
|
|
|
|
Outputs |
|
------------- |
|
feat_hal: features from pdb_out scattered according to the sampled mask |
|
mappings: dict keeping track of corresponding positions in the ref and hal features |
|
|
|
''' |
|
|
|
ref_pdb_2_idx0 = {pdb_idx:i for i, pdb_idx in enumerate(pdb_out['pdb_idx'])} |
|
|
|
|
|
hal_2_ref_idx0 = [] |
|
sampled_mask = [] |
|
for el in mask.split(','): |
|
|
|
if el[0].isalpha(): |
|
sampled_mask.append(el) |
|
chain = el[0] |
|
s,e = parse_range_string(el[1:]) |
|
|
|
for i in range(s, e+1): |
|
idx0 = ref_pdb_2_idx0[(chain, i)] |
|
hal_2_ref_idx0.append(idx0) |
|
|
|
else: |
|
|
|
s,e = parse_range_string(el) |
|
gap_len = np.random.randint(s, e+1) |
|
hal_2_ref_idx0 += [None]*gap_len |
|
sampled_mask.append(f'{gap_len}-{gap_len}') |
|
|
|
|
|
feat_hal, mappings = mk_feat_hal_and_mappings(hal_2_ref_idx0, pdb_out) |
|
|
|
|
|
mappings['sampled_mask'] = ','.join(sampled_mask) |
|
|
|
return feat_hal, mappings |
|
|
|
|
|
def sample_mask(mask, pdb_idx): |
|
''' |
|
Uniformly samples gap lengths, then gathers the ref features |
|
into the target hal features |
|
|
|
Inputs |
|
-------------- |
|
mask: specify the order and ranges of contigs and gaps |
|
Contig - A continuous range of residues from the pdb. |
|
Inclusive of the begining and end |
|
Must start with the chain number |
|
ex: B6-11 |
|
Gap - a gap length or a range of gaps lengths the |
|
model is free to hallucinate |
|
Gap ranges are inclusive of the end |
|
ex: 9-21 |
|
|
|
ex - '3,B6-11,9-21,A36-42,20-30,A12-24,3-6' |
|
|
|
Outputs |
|
------------- |
|
hal_2_ref_idx0: (list; length=L_hal) |
|
List mapping hal_idx0 positions to ref_idx0 positions. |
|
"None" used for indices that do not map to ref. |
|
ex: [None, None, 3, 4, 5, None, None, None, 34, 35, 36] |
|
sampled_mask: (str) |
|
string of the sampled mask, so the transformations can be reapplied |
|
ex - '3-3,B6-11,9-9,A36-42,20-20,A12-24,5-5' |
|
|
|
''' |
|
|
|
ref_pdb_2_idx0 = {pdb_i:i for i, pdb_i in enumerate(pdb_idx)} |
|
|
|
|
|
hal_2_ref_idx0 = [] |
|
sampled_mask = [] |
|
for el in mask.split(','): |
|
|
|
if el[0].isalpha(): |
|
sampled_mask.append(el) |
|
chain = el[0] |
|
s,e = parse_range_string(el[1:]) |
|
|
|
for i in range(s, e+1): |
|
idx0 = ref_pdb_2_idx0[(chain, i)] |
|
hal_2_ref_idx0.append(idx0) |
|
|
|
else: |
|
|
|
s,e = parse_range_string(el) |
|
gap_len = np.random.randint(s, e+1) |
|
hal_2_ref_idx0 += [None]*gap_len |
|
sampled_mask.append(f'{gap_len}-{gap_len}') |
|
|
|
return hal_2_ref_idx0, sampled_mask |
|
|
|
|
|
class GapResampler(): |
|
def __init__(self, use_bkg=True): |
|
''' |
|
|
|
''' |
|
|
|
self.counts_passed = {} |
|
self.counts_bkg = {} |
|
self.use_bkg = use_bkg |
|
|
|
|
|
def clean_mask(self, mask): |
|
''' |
|
Makes mask into a cononical form. |
|
Ensures masks always alternate gap, contig and that |
|
masks begin and end with a gap (even of length 0) |
|
|
|
Input |
|
----------- |
|
masks: list of masks (str). Mask format: comma separted list |
|
of alternating gap_length (int or int-int), contig. |
|
Ex - 9,A12-19,15,B45-52 OR 9-9,A12-19,15-15,B45-52 |
|
|
|
Output |
|
----------- |
|
A canonicalized mask. Ex: N,9,A12-19,15,B45-52,0,C |
|
''' |
|
mask = mask.split(',') |
|
mask_out = [] |
|
was_contig = True |
|
was_gap = False |
|
|
|
for i, el in enumerate(mask): |
|
is_contig = el[0].isalpha() |
|
is_gap = not is_contig |
|
is_last = i == len(mask) - 1 |
|
|
|
|
|
if is_gap: |
|
if '-' in el: |
|
x1, x2 = el.split('-') |
|
if x1 != x2: |
|
print(f"Error: Gap must not be a range: {mask}") |
|
return None |
|
gap = x1 |
|
else: |
|
gap = el |
|
|
|
if is_contig: |
|
contig = el |
|
|
|
|
|
if (was_gap and is_contig): |
|
mask_out.append(contig) |
|
|
|
|
|
elif (was_contig and is_gap): |
|
mask_out.append(gap) |
|
|
|
|
|
elif (was_contig and is_contig): |
|
mask_out.append('0') |
|
mask_out.append(contig) |
|
|
|
|
|
elif (was_gap and is_gap): |
|
combined_len = int(mask_out[-1]) + int(gap) |
|
mask_out[-1] = str(combined_len) |
|
|
|
|
|
if (is_last and is_contig): |
|
mask_out.append('0') |
|
|
|
|
|
was_contig = el[0].isalpha() |
|
was_gap = ~is_contig |
|
|
|
|
|
mask_out.insert(0, 'N') |
|
mask_out.append('C') |
|
|
|
return ','.join(mask_out) |
|
|
|
|
|
def add_mask(self, mask, counting_dict): |
|
''' |
|
Adds counts of gap lengths to counting_dict |
|
|
|
Inputs |
|
----------- |
|
masks: list of masks (str). Mask format: comma separted list |
|
of alternating gap_length (int or int-int), contig. |
|
Ex - 9,A12-19,15,B45-52 OR 9-9,A12-19,15-15,B45-52 |
|
''' |
|
mask = self.clean_mask(mask) |
|
mask = mask.split(',') |
|
n_gaps = len(mask) // 2 |
|
|
|
|
|
for i in range(n_gaps): |
|
con1, gap, con2 = mask[2*i : 2*i+3] |
|
|
|
|
|
if con1 in counting_dict: |
|
if (gap, con2) in counting_dict[con1]: |
|
counting_dict[con1][(gap, con2)] += 1 |
|
else: |
|
counting_dict[con1][(gap, con2)] = 1 |
|
else: |
|
counting_dict[con1] = {(gap, con2): 1} |
|
|
|
|
|
def add_mask_pass(self, mask): |
|
''' |
|
Add a mask that passed to self.counts_passed |
|
''' |
|
self.add_mask(mask, self.counts_passed) |
|
|
|
|
|
def add_mask_bkg(self, mask): |
|
''' |
|
Add a mask that passed to self.counts_bkg |
|
''' |
|
self.add_mask(mask, self.counts_bkg) |
|
|
|
|
|
def get_enrichment(self): |
|
''' |
|
Calculate the ratio of counts_passed / count_bkg |
|
Also notes all contigs |
|
''' |
|
if self.use_bkg is False: |
|
print('Please pass in background masks and set self.use_bkg=True') |
|
return |
|
|
|
self.counts_enrich = copy.copy(self.counts_passed) |
|
self.con_all = set() |
|
|
|
for con1 in self.counts_enrich.keys(): |
|
self.con_all |= set([con1]) |
|
|
|
for gap, con2 in self.counts_enrich[con1].keys(): |
|
self.con_all |= set([con2]) |
|
bkg = self.counts_bkg[con1][(gap, con2)] |
|
cnt = self.counts_passed[con1][(gap, con2)] |
|
self.counts_enrich[con1][(gap, con2)] = cnt / bkg |
|
|
|
def sample_mask(self): |
|
''' |
|
Sample a mask |
|
''' |
|
searching = True |
|
while searching: |
|
n_gaps = len(self.con_all) - 1 |
|
mask = ['N'] |
|
|
|
if self.use_bkg: |
|
counts = self.counts_enrich |
|
else: |
|
counts = self.counts_passed |
|
|
|
for i in range(n_gaps): |
|
con_last = mask[-1] |
|
|
|
|
|
if i == n_gaps - 1: |
|
con_used = set(mask[::2]) |
|
else: |
|
con_used = set(mask[::2]+['C']) |
|
|
|
con_free = self.con_all - con_used |
|
|
|
|
|
jumps_all = counts[con_last] |
|
jumps_free = {k:v for k,v in jumps_all.items() if k[1] in con_free} |
|
|
|
if len(jumps_free) == 0: |
|
print('No available jumps to continue the mask. Sampling again...') |
|
else: |
|
|
|
mvs, cnt = zip(*jumps_free.items()) |
|
cnt = np.array(cnt) |
|
prob = cnt / cnt.sum() |
|
idx = np.random.choice(len(prob), p=prob) |
|
mv = mvs[idx] |
|
|
|
|
|
mask.append(mv[0]) |
|
mask.append(mv[1]) |
|
|
|
|
|
if len(mask) == 2*n_gaps + 1: |
|
searching = False |
|
else: |
|
searching = True |
|
|
|
return ','.join(mask[1:-1]) |
|
|
|
|
|
def gaps_as_ranges(self, mask): |
|
''' |
|
Convert gaps of a single int to ranges, for |
|
backwards compatibility reasons |
|
''' |
|
|
|
mask_out = [] |
|
for el in mask.split(','): |
|
if el[0].isalpha(): |
|
mask_out.append(el) |
|
else: |
|
mask_out.append(f'{el}-{el}') |
|
|
|
return ','.join(mask_out) |
|
|
|
|
|
def recover_mask(trb): |
|
''' |
|
Recover the string of the sampled mask given the trb file |
|
''' |
|
|
|
L_hal = trb['mask_contig'].shape[0] |
|
mask = [] |
|
|
|
for idx0 in range(L_hal): |
|
|
|
if idx0 in trb['con_hal_idx0']: |
|
is_con = True |
|
is_gap = False |
|
else: |
|
is_con = False |
|
is_gap = True |
|
|
|
|
|
if idx0 == 0: |
|
if is_gap: |
|
L_gap = 1 |
|
elif is_con: |
|
ch, idx = trb['con_ref_pdb_idx'][ trb['con_hal_idx0'].tolist().index(idx0) ] |
|
con_start = f'{ch}{idx}' |
|
|
|
|
|
else: |
|
if (was_gap) and (is_gap): |
|
L_gap +=1 |
|
|
|
|
|
elif (was_gap) and (is_con): |
|
|
|
mask.append(f'{L_gap}-{L_gap}') |
|
|
|
ch, idx = trb['con_ref_pdb_idx'][ trb['con_hal_idx0'].tolist().index(idx0) ] |
|
con_start = f'{ch}{idx}' |
|
elif (was_con) and (is_gap): |
|
|
|
ch, idx = trb['con_ref_pdb_idx'][ trb['con_hal_idx0'].tolist().index(idx0) ] |
|
mask.append(f'{con_start}-{idx}') |
|
|
|
L_gap = 1 |
|
|
|
|
|
if idx0 == L_hal-1: |
|
if is_gap: |
|
mask.append(f'{L_gap}-{L_gap}') |
|
elif is_con: |
|
ch, idx = trb['con_ref_pdb_idx'][ trb['con_hal_idx0'].tolist().index(idx0-1) ] |
|
mask.append(f'{con_start}-{idx}') |
|
|
|
|
|
was_con = copy.copy(is_con) |
|
was_gap = copy.copy(is_gap) |
|
|
|
return ','.join(mask) |
|
|
|
|
|
def mask_len(mask): |
|
''' |
|
Calculate the min and max possible length that can |
|
be sampled given a mask |
|
''' |
|
L_min = 0 |
|
L_max = 0 |
|
|
|
for el in mask.split(','): |
|
if el[0].isalpha(): |
|
con_s, con_e = el[1:].split('-') |
|
con_s, con_e = int(con_s), int(con_e) |
|
L_con = con_e - con_s + 1 |
|
L_min += L_con |
|
L_max += L_con |
|
|
|
else: |
|
if '-' in el: |
|
gap_min, gap_max = el.split('-') |
|
gap_min, gap_max = int(gap_min), int(gap_max) |
|
L_min += gap_min |
|
L_max += gap_max |
|
else: |
|
L_min += int(el) |
|
L_max += int(el) |
|
|
|
return L_min, L_max |
|
|
|
class SampledMask(): |
|
def __init__(self, mask_str, ref_pdb_idx, con_to_set=None): |
|
self.str = mask_str |
|
self.L_hal = len(self) |
|
self.L_ref = len(ref_pdb_idx) |
|
|
|
|
|
|
|
|
|
self.ref_pdb_idx = ref_pdb_idx |
|
self.hal_pdb_idx = [('A', i) for i in range(1, len(self)+1)] |
|
|
|
hal_idx0 = 0 |
|
con_ref_pdb_idx = [] |
|
con_hal_pdb_idx = [] |
|
con_ref_idx0 = [] |
|
con_hal_idx0 = [] |
|
|
|
for l in mask_str.split(','): |
|
ch, s, e = SampledMask.parse_contig(l) |
|
|
|
|
|
if ch: |
|
for res in range(s, e+1): |
|
con_ref_pdb_idx.append((ch, res)) |
|
con_hal_pdb_idx.append(('A', hal_idx0+1)) |
|
con_ref_idx0.append(self.ref_pdb_idx.index((ch, res))) |
|
con_hal_idx0.append(hal_idx0) |
|
hal_idx0 += 1 |
|
|
|
else: |
|
for _ in range(s): |
|
hal_idx0 += 1 |
|
|
|
self.con_mappings = { |
|
'ref_pdb_idx': con_ref_pdb_idx, |
|
'hal_pdb_idx': con_hal_pdb_idx, |
|
'ref_idx0': con_ref_idx0, |
|
'hal_idx0': con_hal_idx0, |
|
} |
|
|
|
|
|
|
|
|
|
if con_to_set: |
|
self.con_to_set = con_to_set |
|
else: |
|
contigs = self.get_contigs() |
|
self.con_to_set = dict(zip(contigs, len(contigs)*[0])) |
|
|
|
|
|
set_to_con = {} |
|
for k, v in self.con_to_set.items(): |
|
set_to_con[v] = set_to_con.get(v, []) + [k] |
|
self.set_to_con = set_to_con |
|
|
|
def __len__(self,): |
|
_, L_max = self.mask_len(self.str) |
|
return L_max |
|
|
|
def map(self, sel, src, dst): |
|
''' |
|
Convert the contig selection in one indexing scheme to another. |
|
Will return None if selection is not in a contig. |
|
|
|
Input |
|
---------- |
|
sel (str): selection of a contig range or idx0 range. Can take multiple comma separated values of same type. Ex: A5-10,B2-8 or 3-8,14-21 |
|
src (str): <'ref', 'hal'> |
|
dst (str): <'ref_pdb_idx', 'hal_pdb_idx', 'ref_idx0', 'hal_idx0> |
|
''' |
|
out = [] |
|
for con in sel.split(','): |
|
|
|
ch, s, e = SampledMask.parse_contig(con) |
|
|
|
|
|
if ch: |
|
src_long = f'{src}_pdb_idx' |
|
mapping = dict(zip(self.con_mappings[src_long], self.con_mappings[dst])) |
|
out += [mapping.get((ch, res)) for res in range(s, e+1)] |
|
|
|
|
|
else: |
|
src_long = f'{src}_idx0' |
|
mapping = dict(zip(self.con_mappings[src_long], self.con_mappings[dst])) |
|
out += [mapping.get(i) for i in range(s, e+1)] |
|
|
|
return out |
|
|
|
@staticmethod |
|
def expand(mask_str): |
|
''' |
|
Ex: '2,A3-5,3' --> [None, None, (A,3), (A,4), (A,5), None, None, None] |
|
''' |
|
expanded = [] |
|
for l in mask_str.split(','): |
|
ch, s, e = SampledMask.parse_contig(l) |
|
|
|
|
|
if ch: |
|
expanded += [(ch, res) for res in range(s, e+1)] |
|
|
|
else: |
|
expanded += [None for _ in range(s)] |
|
|
|
return expanded |
|
|
|
@staticmethod |
|
def contract(pdb_idx): |
|
''' |
|
Inverse of expand |
|
Ex: [None, None, (A,3), (A,4), (A,5), None, None, None] --> '2,A3-5,3' |
|
''' |
|
|
|
contracted = [] |
|
l_prev = (None, -200) |
|
first_el_written = False |
|
|
|
for l_curr in pdb_idx: |
|
if l_curr is None: |
|
l_curr = (None, -100) |
|
|
|
|
|
if l_curr == l_prev: |
|
L_gap += 1 |
|
|
|
|
|
elif l_curr == (l_prev[0], l_prev[1]+1): |
|
con_e = l_curr[1] |
|
|
|
|
|
elif (l_curr != l_prev) and (l_curr[0] is None): |
|
|
|
if 'con_ch' in locals(): |
|
contracted.append(f'{con_ch}{con_s}-{con_e}') |
|
|
|
L_gap = 1 |
|
|
|
|
|
elif (l_curr != l_prev) and isinstance(l_curr[0], str): |
|
|
|
if isinstance(l_prev[0], str) and ('con_ch' in locals()): |
|
contracted.append(f'{con_ch}{con_s}-{con_e}') |
|
|
|
elif 'L_gap' in locals(): |
|
contracted.append(str(L_gap)) |
|
|
|
con_ch = l_curr[0] |
|
con_s = l_curr[1] |
|
con_e = l_curr[1] |
|
|
|
|
|
l_prev = l_curr |
|
|
|
|
|
if isinstance(l_prev[0], str) and ('con_ch' in locals()): |
|
contracted.append(f'{con_ch}{con_s}-{con_e}') |
|
elif 'L_gap' in locals(): |
|
contracted.append(str(L_gap)) |
|
|
|
return ','.join(contracted) |
|
|
|
def subset(self, sub): |
|
''' |
|
Make a mask_str that is a subset of the original mask_str |
|
Ex: self.mask_str = '2,A5-20,4', sub='A5-10' --> '2,A5-10,14' |
|
''' |
|
|
|
|
|
hal_idx0 = self.map(sub, 'ref', 'hal_idx0') |
|
ref_pdb_idx = SampledMask.expand(sub) |
|
mapping = dict(zip(hal_idx0, ref_pdb_idx)) |
|
|
|
expanded = [mapping.get(idx0) for idx0 in range(len(self))] |
|
|
|
return self.contract(expanded) |
|
|
|
def mask_len(self, mask): |
|
''' |
|
Technically, can take both sampled and unsampled mask |
|
''' |
|
L_min = 0 |
|
L_max = 0 |
|
for l in self.str.split(','): |
|
ch, s, e = SampledMask.parse_contig(l) |
|
|
|
|
|
if ch: |
|
L_min += e - s + 1 |
|
L_max += e - s + 1 |
|
|
|
else: |
|
L_min += s |
|
L_max += e |
|
|
|
return L_min, L_max |
|
|
|
def get_contigs(self, include_receptor=True): |
|
''' |
|
Get a list of all contigs in the mask |
|
''' |
|
[con for con in self.str.split(',') if SampledMask.parse_contig(con)[0]] |
|
|
|
contigs = [] |
|
for con in self.str.split(','): |
|
ch = SampledMask.parse_contig(con)[0] |
|
if ch == 'R' and include_receptor == False: |
|
continue |
|
if ch: |
|
contigs.append(con) |
|
|
|
return contigs |
|
|
|
def get_gaps(self,): |
|
''' |
|
Get a list of all gaps in the mask |
|
''' |
|
return [con for con in self.str.split(',') if SampledMask.parse_contig(con)[0] is None] |
|
|
|
@staticmethod |
|
def parse_range(_range): |
|
if '-' in _range: |
|
s, e = _range.split('-') |
|
else: |
|
s, e = _range, _range |
|
|
|
return int(s), int(e) |
|
|
|
@staticmethod |
|
def parse_contig(contig): |
|
''' |
|
Return the chain, start and end residue in a contig or gap str. |
|
|
|
Ex: |
|
'A4-8' --> 'A', 4, 8 |
|
'A5' --> 'A', 5, 5 |
|
'4-8' --> None, 4, 8 |
|
'A' --> 'A', None, None |
|
''' |
|
|
|
|
|
if contig[0].isalpha(): |
|
ch = contig[0] |
|
if len(contig) > 1: |
|
s, e = SampledMask.parse_range(contig[1:]) |
|
else: |
|
s, e = None, None |
|
|
|
else: |
|
ch = None |
|
s, e = SampledMask.parse_range(contig) |
|
|
|
return ch, s, e |
|
|
|
def remove_diag(self, m_2d): |
|
''' |
|
Set the diagonal of a 2D boolean array to False |
|
''' |
|
L = m_2d.shape[0] |
|
m_2d[np.arange(L), np.arange(L)] = False |
|
|
|
return m_2d |
|
|
|
def get_receptor_contig(self,): |
|
''' |
|
Returns None if there is no chain R in the mask_str |
|
''' |
|
receptor_contig = [l for l in self.get_contigs() if 'R' in l] |
|
|
|
if len(receptor_contig) == 0: |
|
receptor_contig = None |
|
else: |
|
receptor_contig = ','.join(receptor_contig) |
|
|
|
return receptor_contig |
|
|
|
def remove_receptor(self, m_2d): |
|
''' |
|
Remove intra-receptor contacts (chain R) from a mask |
|
''' |
|
receptor_contig = self.get_receptor_contig() |
|
|
|
if receptor_contig: |
|
m_1d = np.zeros(self.L_hal, dtype=bool) |
|
idx = np.array(self.map(receptor_contig, 'ref', 'hal_idx0')) |
|
m_1d[idx] = True |
|
update = m_1d[:, None] * m_1d[None, :] |
|
m_2d = m_2d * ~update |
|
|
|
return m_2d |
|
|
|
def get_mask_con(self, include_receptor=False): |
|
|
|
L = self.L_hal |
|
mask_con = np.zeros([L, L], dtype=bool) |
|
|
|
for set_id, contigs in self.set_to_con.items(): |
|
m_1d = np.zeros(L, dtype=bool) |
|
for con in contigs: |
|
idx = self.map(con, 'ref', 'hal_idx0') |
|
idx = [l for l in idx if l != None] |
|
idx = np.array(idx, dtype=int) |
|
m_1d[idx] = True |
|
|
|
update = m_1d[:, None] * m_1d[None, :] |
|
mask_con = np.any([mask_con, update], axis=0) |
|
|
|
|
|
mask_con = self.remove_diag(mask_con) |
|
|
|
if not include_receptor: |
|
mask_con = self.remove_receptor(mask_con) |
|
|
|
return mask_con |
|
|
|
def get_mask_hal(self,): |
|
mask_hal = ~self.get_mask_con() |
|
mask_hal = self.remove_diag(mask_hal) |
|
mask_hal = self.remove_receptor(mask_hal) |
|
|
|
return mask_hal |
|
|
|
def get_mask_cce(self, pdb, cce_cutoff=20., include_receptor=False): |
|
''' |
|
Remove ij pixels where contig distances are greater than cce_cutoff. |
|
''' |
|
|
|
mask_con = self.get_mask_con(include_receptor=include_receptor) |
|
|
|
|
|
xyz_ref = torch.tensor(pdb['xyz'][:,:3,:]).float() |
|
c6d_ref = geometry.xyz_to_c6d(xyz_ref[None].permute(0,2,1,3),{'DMAX':20.0}).numpy() |
|
dist = c6d_ref[0,:,:,0] |
|
|
|
|
|
dist_scattered = self.scatter_2d(dist) |
|
|
|
|
|
update = dist_scattered < cce_cutoff |
|
mask_cce = np.all([mask_con, update], axis=0) |
|
|
|
return mask_cce |
|
|
|
def scatter_2d(self, ref_feat_2d): |
|
''' |
|
Inputs |
|
--------- |
|
ref_feat_2d (np.array; (L_ref, L_ref, ...)): Features to be scattered. The first two leading dimensions must be equal to L_ref. |
|
''' |
|
assert ref_feat_2d.shape[:2] == (self.L_ref, self.L_ref), 'ERROR: feat_2d must have leading dimensions of (L_ref, L_ref)' |
|
|
|
trailing_dims = ref_feat_2d.shape[2:] |
|
dtype = ref_feat_2d.dtype |
|
hal_feat_2d = np.zeros((self.L_hal, self.L_hal)+trailing_dims, dtype=dtype) |
|
|
|
con_hal_idx0 = np.array(self.con_mappings['hal_idx0']) |
|
ref_hal_idx0 = np.array(self.con_mappings['ref_idx0']) |
|
hal_feat_2d[con_hal_idx0[:, None], con_hal_idx0[None, :]] = ref_feat_2d[ref_hal_idx0[:, None], ref_hal_idx0[None, :]] |
|
|
|
return hal_feat_2d |
|
|
|
def scatter_1d(self, ref_feat_1d): |
|
''' |
|
Inputs |
|
--------- |
|
ref_feat_1d (np.array; (L_ref, ...)): Features to be scattered. The first leading dimension must be equal to L_ref. |
|
''' |
|
assert ref_feat_1d.shape[0] == self.L_ref, 'ERROR: feat_1d must have leading dimensions of (L_ref,)' |
|
|
|
trailing_dims = ref_feat_1d.shape[1:] |
|
dtype = ref_feat_1d.dtype |
|
hal_feat_1d = np.zeros((self.L_hal,)+trailing_dims, dtype=dtype) |
|
|
|
con_hal_idx0 = np.array(self.con_mappings['hal_idx0']) |
|
ref_hal_idx0 = np.array(self.con_mappings['ref_idx0']) |
|
hal_feat_1d[con_hal_idx0] = ref_feat_1d[ref_hal_idx0] |
|
|
|
return hal_feat_1d |
|
|
|
def idx_for_template(self, gap=200): |
|
''' |
|
Essentially return hal_idx0, except have a large jump for chain B, |
|
to simulate a chain break. If B contains internal jumps in residue |
|
numbering, these are preserved. |
|
''' |
|
|
|
is_rec = self.m1d_receptor() |
|
resi_rec = np.array([idx[1] for idx in SampledMask.expand(self.str) |
|
if idx is not None and idx[0]=='R']) |
|
L_binder = sum(~is_rec) |
|
|
|
|
|
if len(resi_rec)>0: |
|
if is_rec[0]: |
|
|
|
idx_tmpl = np.arange(resi_rec[-1]+gap+1, resi_rec[-1]+gap+1+L_binder) |
|
idx_tmpl = np.concatenate([resi_rec, idx_tmpl]) |
|
else: |
|
|
|
idx_tmpl = np.arange(L_binder) |
|
if resi_rec[0] <= idx_tmpl[-1]+gap: |
|
resi_rec += idx_tmpl[-1] - resi_rec[0] + gap + 1 |
|
idx_tmpl = np.concatenate([idx_tmpl, resi_rec]) |
|
else: |
|
|
|
idx_tmpl = np.arange(L_binder) |
|
return idx_tmpl |
|
|
|
def m1d_receptor(self,): |
|
''' |
|
Get a boolean array, True if the position corresponds to the receptor |
|
''' |
|
m1d = [(l is not None) and (l[0] == 'R') for l in SampledMask.expand(self.str)] |
|
return np.array(m1d) |
|
|
|
def erode(self, N_term=True, C_term=True): |
|
''' |
|
Reduce non-receptor contigs by 1 residue from the N and/or C terminus. |
|
''' |
|
x = SampledMask.expand(self.str) |
|
|
|
if N_term: |
|
for i, l in enumerate(x): |
|
if (l is not None) and (l[0] != 'R'): |
|
x[i] = None |
|
break |
|
|
|
if C_term: |
|
x = x[::-1] |
|
|
|
for i, l in enumerate(x): |
|
if (l is not None) and (l[0] != 'R'): |
|
x[i] = None |
|
break |
|
|
|
x = x[::-1] |
|
|
|
self.str = self.contract(x) |
|
|
|
return |
|
|
|
def len_contigs(self, include_receptor=False): |
|
con_str = ','.join(self.get_contigs(include_receptor)) |
|
return len(SampledMask.expand(con_str)) |
|
|
|
|
|
def make_template_features(pdb, args, device, hal_2_ref_idx0=None, sm_loss=None): |
|
''' |
|
Inputs |
|
---------- |
|
sm_loss: Instance of a contig.SampledMask object used for making the loss masks. |
|
''' |
|
PARAMS = { |
|
"DMIN" : 2.0, |
|
"DMAX" : 20.0, |
|
"DBINS" : 36, |
|
"ABINS" : 36, |
|
} |
|
if args.use_template: |
|
B,T = 1,1 |
|
|
|
|
|
xyz_t = torch.tensor(pdb['xyz'][:, :3][None, None]) |
|
t0d = torch.ones((1,1,3)) |
|
|
|
t2d_ref = xyz_to_t2d(xyz_t=xyz_t, t0d=t0d, params=PARAMS) |
|
L_ref = t2d_ref.shape[2] |
|
|
|
a = 2 * torch.ones([B,T,L_ref], dtype=torch.float32, device=device) |
|
b = 0 * torch.ones([B,T,L_ref], dtype=torch.float32, device=device) |
|
c = 1 * torch.ones([B,T,L_ref], dtype=torch.float32, device=device) |
|
|
|
t1d_ref = torch.stack([a,b,c], axis=-1) |
|
|
|
|
|
|
|
if (args.use_template.lower() == 't') or (args.use_template.lower() == 'true'): |
|
sm_tmpl = sm_loss |
|
|
|
else: |
|
subset_contigs = args.use_template |
|
|
|
if args.receptor: |
|
receptor_contig = sm_loss.get_receptor_contig() |
|
subset_contigs = ','.join([subset_contigs, receptor_contig]) |
|
|
|
mask_str_tmpl = sm_loss.subset(subset_contigs) |
|
sm_tmpl = SampledMask(mask_str=mask_str_tmpl, ref_pdb_idx=pdb['pdb_idx']) |
|
|
|
|
|
|
|
t1d_ref = t1d_ref.permute(2,3,0,1) |
|
t2d_ref = t2d_ref.permute(2,3,4,0,1) |
|
|
|
t1d_tmpl = sm_tmpl.scatter_1d(t1d_ref.cpu().numpy()) |
|
t2d_tmpl = sm_tmpl.scatter_2d(t2d_ref.cpu().numpy()) |
|
|
|
|
|
mask_con = sm_tmpl.get_mask_con(include_receptor=True) |
|
t2d_tmpl = (t2d_tmpl.T * mask_con.T).T |
|
|
|
t1d_tmpl = torch.tensor(t1d_tmpl, device=device) |
|
t2d_tmpl = torch.tensor(t2d_tmpl, device=device) |
|
|
|
|
|
t1d_tmpl = t1d_tmpl.permute(2,3,0,1) |
|
t2d_tmpl = t2d_tmpl.permute(3,4,0,1,2) |
|
|
|
|
|
t2d_tmpl[..., -3:] = 1. |
|
|
|
idx = torch.tensor(sm_tmpl.idx_for_template(gap=200), device=device)[None] |
|
|
|
net_kwargs = { |
|
'idx': idx, |
|
't1d': t1d_tmpl, |
|
't2d': t2d_tmpl |
|
} |
|
|
|
elif args.template_pdbs is not None: |
|
B,T = 1, len(args.template_pdbs) |
|
|
|
|
|
xyz_t = [torch.tensor(parse_pdb(f_pdb)['xyz'][:, :3]) for f_pdb in args.template_pdbs] |
|
xyz_t = torch.stack(xyz_t, axis=0)[None] |
|
t0d = torch.ones(B,T,3) |
|
|
|
t2d_tmpl = xyz_to_t2d(xyz_t=xyz_t, t0d=t0d, params=PARAMS).to(device) |
|
L_tmpl = t2d_tmpl.shape[2] |
|
t1d_tmpl = torch.ones(size=(B,T,L_tmpl,3), dtype=torch.float32, device=device) |
|
|
|
|
|
idx_tmpl = torch.range(0, L_tmpl-1, dtype=torch.long, device=device)[None] |
|
|
|
|
|
net_kwargs = { |
|
'idx': idx_tmpl, |
|
't1d': t1d_tmpl, |
|
't2d': t2d_tmpl |
|
} |
|
|
|
else: |
|
net_kwargs = {} |
|
|
|
return net_kwargs |
|
|