|
import numpy as np |
|
import torch |
|
|
|
|
|
def get_pair_dist(a, b): |
|
"""calculate pair distances between two sets of points |
|
|
|
Parameters |
|
---------- |
|
a,b : pytorch tensors of shape [batch,nres,3] |
|
store Cartesian coordinates of two sets of atoms |
|
Returns |
|
------- |
|
dist : pytorch tensor of shape [batch,nres,nres] |
|
stores paitwise distances between atoms in a and b |
|
""" |
|
|
|
dist = torch.cdist(a, b, p=2) |
|
return dist |
|
|
|
|
|
def get_ang(a, b, c): |
|
"""calculate planar angles for all consecutive triples (a[i],b[i],c[i]) |
|
from Cartesian coordinates of three sets of atoms a,b,c |
|
|
|
Parameters |
|
---------- |
|
a,b,c : pytorch tensors of shape [batch,nres,3] |
|
store Cartesian coordinates of three sets of atoms |
|
Returns |
|
------- |
|
ang : pytorch tensor of shape [batch,nres] |
|
stores resulting planar angles |
|
""" |
|
v = a - b |
|
w = c - b |
|
v = v / torch.norm(v, dim=-1, keepdim=True) |
|
w = w / torch.norm(w, dim=-1, keepdim=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y = torch.norm(v-w,dim=-1) |
|
x = torch.norm(v+w,dim=-1) |
|
ang = 2*torch.atan2(y, x) |
|
|
|
return ang |
|
|
|
|
|
def get_dih(a, b, c, d): |
|
"""calculate dihedral angles for all consecutive quadruples (a[i],b[i],c[i],d[i]) |
|
given Cartesian coordinates of four sets of atoms a,b,c,d |
|
|
|
Parameters |
|
---------- |
|
a,b,c,d : pytorch tensors of shape [batch,nres,3] |
|
store Cartesian coordinates of four sets of atoms |
|
Returns |
|
------- |
|
dih : pytorch tensor of shape [batch,nres] |
|
stores resulting dihedrals |
|
""" |
|
b0 = a - b |
|
b1r = c - b |
|
b2 = d - c |
|
|
|
b1 = b1r/torch.norm(b1r, dim=-1, keepdim=True) |
|
|
|
v = b0 - torch.sum(b0*b1, dim=-1, keepdim=True)*b1 |
|
w = b2 - torch.sum(b2*b1, dim=-1, keepdim=True)*b1 |
|
|
|
x = torch.sum(v*w, dim=-1) |
|
y = torch.sum(torch.cross(b1,v,dim=-1)*w, dim=-1) |
|
ang = torch.atan2(y, x) |
|
|
|
return ang |
|
|
|
|
|
|
|
def xyz_to_c6d(xyz, params): |
|
"""convert cartesian coordinates into 2d distance |
|
and orientation maps |
|
|
|
Parameters |
|
---------- |
|
xyz : pytorch tensor of shape [batch,3,nres,3] |
|
stores Cartesian coordinates of backbone N,Ca,C atoms |
|
Returns |
|
------- |
|
c6d : pytorch tensor of shape [batch,nres,nres,4] |
|
stores stacked dist,omega,theta,phi 2D maps |
|
""" |
|
|
|
batch = xyz.shape[0] |
|
nres = xyz.shape[2] |
|
|
|
|
|
N = xyz[:,0] |
|
Ca = xyz[:,1] |
|
C = xyz[:,2] |
|
|
|
|
|
b = Ca - N |
|
c = C - Ca |
|
a = torch.cross(b, c, dim=-1) |
|
Cb = -0.58273431*a + 0.56802827*b - 0.54067466*c + Ca |
|
|
|
|
|
c6d = torch.zeros([batch,nres,nres,4],dtype=xyz.dtype,device=xyz.device) |
|
|
|
dist = get_pair_dist(Cb,Cb) |
|
dist[torch.isnan(dist)] = 999.9 |
|
c6d[...,0] = dist + 999.9*torch.eye(nres,device=xyz.device)[None,...] |
|
b,i,j = torch.where(c6d[...,0]<params['DMAX']) |
|
|
|
c6d[b,i,j,torch.full_like(b,1)] = get_dih(Ca[b,i], Cb[b,i], Cb[b,j], Ca[b,j]) |
|
c6d[b,i,j,torch.full_like(b,2)] = get_dih(N[b,i], Ca[b,i], Cb[b,i], Cb[b,j]) |
|
c6d[b,i,j,torch.full_like(b,3)] = get_ang(Ca[b,i], Cb[b,i], Cb[b,j]) |
|
|
|
|
|
c6d[...,0][c6d[...,0]>=params['DMAX']] = 999.9 |
|
|
|
return c6d |
|
|
|
|
|
|
|
def c6d_to_bins(c6d,params): |
|
"""bin 2d distance and orientation maps |
|
""" |
|
|
|
dstep = (params['DMAX'] - params['DMIN']) / params['DBINS'] |
|
astep = 2.0*np.pi / params['ABINS'] |
|
|
|
dbins = torch.linspace(params['DMIN']+dstep, params['DMAX'], params['DBINS'],dtype=c6d.dtype,device=c6d.device) |
|
ab360 = torch.linspace(-np.pi+astep, np.pi, params['ABINS'],dtype=c6d.dtype,device=c6d.device) |
|
ab180 = torch.linspace(astep, np.pi, params['ABINS']//2,dtype=c6d.dtype,device=c6d.device) |
|
|
|
db = torch.bucketize(c6d[...,0].contiguous(),dbins) |
|
ob = torch.bucketize(c6d[...,1].contiguous(),ab360) |
|
tb = torch.bucketize(c6d[...,2].contiguous(),ab360) |
|
pb = torch.bucketize(c6d[...,3].contiguous(),ab180) |
|
|
|
ob[db==params['DBINS']] = params['ABINS'] |
|
tb[db==params['DBINS']] = params['ABINS'] |
|
pb[db==params['DBINS']] = params['ABINS']//2 |
|
|
|
return torch.stack([db,ob,tb,pb],axis=-1).to(torch.uint8) |
|
|
|
|
|
|
|
def dist_to_bins(dist,params): |
|
"""bin 2d distance maps |
|
""" |
|
|
|
dstep = (params['DMAX'] - params['DMIN']) / params['DBINS'] |
|
db = torch.round((dist-params['DMIN']-dstep/2)/dstep) |
|
|
|
db[db<0] = 0 |
|
db[db>params['DBINS']] = params['DBINS'] |
|
|
|
return db.long() |
|
|
|
|
|
|
|
def c6d_to_bins2(c6d,params): |
|
"""bin 2d distance and orientation maps |
|
(alternative slightly simpler version) |
|
""" |
|
|
|
dstep = (params['DMAX'] - params['DMIN']) / params['DBINS'] |
|
astep = 2.0*np.pi / params['ABINS'] |
|
|
|
db = torch.round((c6d[...,0]-params['DMIN']-dstep/2)/dstep) |
|
ob = torch.round((c6d[...,1]+np.pi-astep/2)/astep) |
|
tb = torch.round((c6d[...,2]+np.pi-astep/2)/astep) |
|
pb = torch.round((c6d[...,3]-astep/2)/astep) |
|
|
|
|
|
db[db<0] = 0 |
|
|
|
|
|
db[db>params['DBINS']] = params['DBINS'] |
|
ob[db==params['DBINS']] = params['ABINS'] |
|
tb[db==params['DBINS']] = params['ABINS'] |
|
pb[db==params['DBINS']] = params['ABINS']//2 |
|
|
|
return torch.stack([db,ob,tb,pb],axis=-1).long() |
|
|
|
|
|
|
|
def get_cb(N,Ca,C): |
|
"""recreate Cb given N,Ca,C""" |
|
b = Ca - N |
|
c = C - Ca |
|
a = torch.cross(b, c, dim=-1) |
|
Cb = -0.58273431*a + 0.56802827*b - 0.54067466*c + Ca |
|
return Cb |
|
|