Spaces:
Running
Running
File size: 30,866 Bytes
b7c497f 96b5215 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 |
import * as React from "react";
import { useState, useRef, useEffect } from "react";
import { useVLMContext } from "../context/useVLMContext";
import { drawBoundingBoxesOnCanvas } from "./BoxAnnotator";
const MODES = ["File"] as const;
type Mode = typeof MODES[number];
const EXAMPLE_VIDEO_URL = "https://huggingface.co/Quazim0t0/yolov8-onnx/resolve/main/sample.mp4";
const EXAMPLE_PROMPT = "Describe the video";
function isImageFile(file: File) {
return file.type.startsWith("image/");
}
function isVideoFile(file: File) {
return file.type.startsWith("video/");
}
function denormalizeBox(box: number[], width: number, height: number) {
// If all values are between 0 and 1, treat as normalized
if (box.length === 4 && box.every(v => v >= 0 && v <= 1)) {
return [
box[0] * width,
box[1] * height,
box[2] * width,
box[3] * height
];
}
return box;
}
// Add this robust fallback parser near the top
function extractAllBoundingBoxes(output: string): { label: string, bbox_2d: number[] }[] {
// Try to parse as JSON first
try {
const parsed = JSON.parse(output);
if (Array.isArray(parsed)) {
const result: { label: string, bbox_2d: number[] }[] = [];
for (const obj of parsed) {
if (obj && obj.label && Array.isArray(obj.bbox_2d)) {
if (Array.isArray(obj.bbox_2d[0])) {
for (const arr of obj.bbox_2d) {
if (Array.isArray(arr) && arr.length === 4) {
result.push({ label: obj.label, bbox_2d: arr });
}
}
} else if (obj.bbox_2d.length === 4) {
result.push({ label: obj.label, bbox_2d: obj.bbox_2d });
}
}
}
if (result.length > 0) return result;
}
} catch (e) {}
// Fallback: extract all [x1, y1, x2, y2] arrays from the string
const boxRegex = /\[\s*([0-9.]+)\s*,\s*([0-9.]+)\s*,\s*([0-9.]+)\s*,\s*([0-9.]+)\s*\]/g;
const boxes: { label: string, bbox_2d: number[] }[] = [];
let match;
while ((match = boxRegex.exec(output)) !== null) {
const arr = [parseFloat(match[1]), parseFloat(match[2]), parseFloat(match[3]), parseFloat(match[4])];
boxes.push({ label: '', bbox_2d: arr });
}
return boxes;
}
// NOTE: You must install onnxruntime-web:
// npm install onnxruntime-web
// @ts-ignore
import * as ort from 'onnxruntime-web';
// If you still get type errors, add a global.d.ts with: declare module 'onnxruntime-web';
// Set your YOLOv8 ONNX model URL here:
const YOLOV8_ONNX_URL = "https://huggingface.co/Quazim0t0/yolov8-onnx/resolve/main/yolov8n.onnx"; // <-- PUT YOUR ONNX FILE URL HERE
// Add these constants to match the YOLOv8 input size
const YOLOV8_INPUT_WIDTH = 640;
const YOLOV8_INPUT_HEIGHT = 480;
// 1. Load the ONNX model once
let yoloSession: ort.InferenceSession | null = null;
// Add a busy flag to prevent concurrent YOLOv8 inferences
let isYoloBusy = false;
async function loadYoloModel() {
if (!yoloSession) {
yoloSession = await ort.InferenceSession.create(YOLOV8_ONNX_URL);
}
return yoloSession;
}
// COCO class names for YOLOv8
const YOLO_CLASSES: string[] = [
"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
"fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
"elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
"skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle",
"wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange",
"broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed",
"dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven",
"toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush"
];
// Preprocess video frame to YOLOv8 input tensor [1,3,640,640]
function preprocessFrameToTensor(video: HTMLVideoElement): ort.Tensor {
const width = 640;
const height = 480;
const canvas = document.createElement('canvas');
canvas.width = width;
canvas.height = height;
const ctx = canvas.getContext('2d');
if (!ctx) throw new Error('Could not get 2D context');
ctx.drawImage(video, 0, 0, width, height);
const imageData = ctx.getImageData(0, 0, width, height);
const { data } = imageData;
// Convert to Float32Array [1,3,480,640], normalize to [0,1]
const floatData = new Float32Array(1 * 3 * height * width);
for (let i = 0; i < width * height; i++) {
floatData[i] = data[i * 4] / 255; // R
floatData[i + width * height] = data[i * 4 + 1] / 255; // G
floatData[i + 2 * width * height] = data[i * 4 + 2] / 255; // B
}
return new ort.Tensor('float32', floatData, [1, 3, height, width]);
}
// Update postprocessYoloOutput to remove unused inputWidth and inputHeight parameters
function postprocessYoloOutput(output: ort.Tensor) {
// output.dims: [1, num_detections, 6]
const data = output.data;
const numDetections = output.dims[1];
const results = [];
for (let i = 0; i < numDetections; i++) {
const offset = i * 6;
const x1 = data[offset];
const y1 = data[offset + 1];
const x2 = data[offset + 2];
const y2 = data[offset + 3];
const score = data[offset + 4];
const classId = data[offset + 5];
if (score < 0.2) continue; // adjust threshold as needed
results.push({
bbox: [x1, y1, x2, y2],
label: YOLO_CLASSES[classId] || `class_${classId}`,
score
});
}
return results;
}
// Helper type guard for annotation
function hasAnnotation(obj: any): obj is { annotation: string } {
return typeof obj === 'object' && obj !== null && 'annotation' in obj && typeof obj.annotation === 'string';
}
export default function MultiSourceCaptioningView() {
const [mode, setMode] = useState<Mode>("File");
const [videoUrl] = useState<string>(EXAMPLE_VIDEO_URL);
const [prompt, setPrompt] = useState<string>(EXAMPLE_PROMPT);
const [processing, setProcessing] = useState(false);
const [error, setError] = useState<string | null>(null);
const [uploadedFile, setUploadedFile] = useState<File | null>(null);
const [uploadedUrl, setUploadedUrl] = useState<string>("");
const [videoProcessing, setVideoProcessing] = useState(false);
const [imageProcessed, setImageProcessed] = useState(false);
const [exampleProcessing, setExampleProcessing] = useState(false);
const [debugOutput, setDebugOutput] = useState<string>("");
const [canvasDims, setCanvasDims] = useState<{w:number,h:number}|null>(null);
const [videoDims, setVideoDims] = useState<{w:number,h:number}|null>(null);
const [inferenceStatus, setInferenceStatus] = useState<string>("");
const [showProcessingVideo, setShowProcessingVideo] = useState(false);
const videoRef = useRef<HTMLVideoElement | null>(null);
const overlayVideoRef = useRef<HTMLVideoElement | null>(null);
const processingVideoRef = useRef<HTMLVideoElement | null>(null);
const canvasRef = useRef<HTMLCanvasElement | null>(null);
const imageRef = useRef<HTMLImageElement | null>(null);
const boxHistoryRef = useRef<any[]>([]);
// Add a ref to store the latest YOLOv8 results (with optional FastVLM annotation)
const lastYoloBoxesRef = React.useRef<any[]>([]);
const { isLoaded, isLoading, error: modelError, runInference } = useVLMContext();
// Remove videoProcessingRef and exampleProcessingRef
// Add a single processingLoopRef
const processingLoopRef = React.useRef(false);
const processVideoLoop = async () => {
if (!processingLoopRef.current) return;
if (isYoloBusy) {
// Optionally log: "Inference already running, skipping frame"
requestAnimationFrame(processVideoLoop);
return;
}
await yoloDetectionLoop(); // Replaced processVideoFrame with yoloDetectionLoop
// Schedule the next frame as soon as possible
requestAnimationFrame(processVideoLoop);
};
const processExampleLoop = async () => {
while (processingLoopRef.current) {
await yoloDetectionLoop(); // Replaced processVideoFrame with yoloDetectionLoop
await new Promise(res => setTimeout(res, 1000));
}
};
// Set your YOLOv8 ONNX backend API endpoint here:
// const YOLOV8_API_URL = "https://YOUR_YOLOV8_BACKEND_URL_HERE/detect"; // <-- PUT YOUR ENDPOINT HERE
// Add this useEffect for overlay video synchronization
useEffect(() => {
const main = videoRef.current;
const overlay = overlayVideoRef.current;
if (!main || !overlay) return;
// Sync play/pause
const onPlay = () => { if (overlay.paused) overlay.play(); };
const onPause = () => { if (!overlay.paused) overlay.pause(); };
// Sync seeking and time
const onSeekOrTime = () => {
if (Math.abs(main.currentTime - overlay.currentTime) > 0.05) {
overlay.currentTime = main.currentTime;
}
};
main.addEventListener('play', onPlay);
main.addEventListener('pause', onPause);
main.addEventListener('seeked', onSeekOrTime);
main.addEventListener('timeupdate', onSeekOrTime);
// Clean up
return () => {
main.removeEventListener('play', onPlay);
main.removeEventListener('pause', onPause);
main.removeEventListener('seeked', onSeekOrTime);
main.removeEventListener('timeupdate', onSeekOrTime);
};
}, [videoRef, overlayVideoRef, uploadedUrl, videoUrl, mode]);
useEffect(() => {
if ((mode === "File") && processingVideoRef.current) {
processingVideoRef.current.play().catch(() => {});
}
}, [mode, videoUrl, uploadedUrl]);
// Remove old prompt-based box extraction logic and only use the above for video frames.
const handleFileChange = (e: React.ChangeEvent<HTMLInputElement>) => {
const file = e.target.files?.[0] || null;
setUploadedFile(file);
setUploadedUrl(file ? URL.createObjectURL(file) : "");
setError(null);
setImageProcessed(false);
setVideoProcessing(false);
setExampleProcessing(false);
};
// Webcam mode: process frames with setInterval
useEffect(() => {
if (mode !== "File" || !isLoaded || !uploadedFile || !isVideoFile(uploadedFile) || !videoProcessing) return;
processVideoLoop();
}, [mode, isLoaded, prompt, runInference, uploadedFile, videoProcessing]);
// Example video mode: process frames with setInterval
useEffect(() => {
if (mode !== "File" || uploadedFile || !isLoaded || !exampleProcessing) return;
processExampleLoop();
}, [mode, isLoaded, prompt, runInference, uploadedFile, exampleProcessing]);
// File mode: process uploaded image (only on button click)
const handleProcessImage = async () => {
if (!isLoaded || !uploadedFile || !isImageFile(uploadedFile) || !imageRef.current || !canvasRef.current) return;
const img = imageRef.current;
const canvas = canvasRef.current;
canvas.width = img.naturalWidth;
canvas.height = img.naturalHeight;
setCanvasDims({w:canvas.width,h:canvas.height});
setVideoDims({w:img.naturalWidth,h:img.naturalHeight});
const ctx = canvas.getContext("2d");
if (!ctx) return;
ctx.drawImage(img, 0, 0, canvas.width, canvas.height);
setProcessing(true);
setError(null);
setInferenceStatus("Running inference...");
await runInference(img, prompt, (output: string) => {
setDebugOutput(output);
setInferenceStatus("Inference complete.");
ctx.drawImage(img, 0, 0, canvas.width, canvas.height);
let boxes = extractAllBoundingBoxes(output);
console.log("Model output:", output);
console.log("Boxes after normalization:", boxes);
console.log("Canvas size:", canvas.width, canvas.height);
if (boxes.length > 0) {
const [x1, y1, x2, y2] = boxes[0].bbox_2d;
console.log("First box coords:", x1, y1, x2, y2);
}
if (boxes.length === 0) setInferenceStatus("No boxes detected or model output invalid.");
if (Array.isArray(boxes) && boxes.length > 0) {
const scaleX = canvas.width / img.naturalWidth;
const scaleY = canvas.height / img.naturalHeight;
drawBoundingBoxesOnCanvas(ctx, boxes, { scaleX, scaleY });
}
setImageProcessed(true);
});
setProcessing(false);
};
// File mode: process uploaded video frames (start/stop)
const handleToggleVideoProcessing = () => {
setVideoProcessing((prev: boolean) => {
const next = !prev;
// Always stop all loops before starting
processingLoopRef.current = false;
setTimeout(() => {
if (next) {
processingLoopRef.current = true;
processVideoLoop();
}
}, 50);
return next;
});
};
// Handle start/stop for example video processing
const handleToggleExampleProcessing = () => {
setExampleProcessing((prev: boolean) => {
const next = !prev;
// Always stop all loops before starting
processingLoopRef.current = false;
setTimeout(() => {
if (next) {
processingLoopRef.current = true;
processVideoLoop();
}
}, 50);
return next;
});
};
// Test draw box function
const handleTestDrawBox = () => {
if (!canvasRef.current) return;
const canvas = canvasRef.current;
const ctx = canvas.getContext("2d");
if (!ctx) return;
ctx.clearRect(0, 0, canvas.width, canvas.height);
ctx.strokeStyle = "#FF00FF";
ctx.lineWidth = 4;
ctx.strokeRect(40, 40, Math.max(40,canvas.width/4), Math.max(40,canvas.height/4));
ctx.font = "20px Arial";
ctx.fillStyle = "#FF00FF";
ctx.fillText("Test Box", 50, 35);
};
useEffect(() => {
const draw = () => {
const overlayVideo = overlayVideoRef.current;
const canvas = canvasRef.current;
if (!overlayVideo || !canvas) return;
const displayWidth = overlayVideo.clientWidth;
const displayHeight = overlayVideo.clientHeight;
canvas.width = displayWidth;
canvas.height = displayHeight;
const ctx = canvas.getContext("2d");
if (!ctx) return;
ctx.clearRect(0, 0, canvas.width, canvas.height);
const now = Date.now();
const boxHistory = boxHistoryRef.current.filter((b: any) => now - b.timestamp < 2000);
if (boxHistory.length > 0) {
// Fix: Draw all boxes, even if bbox_2d is an array of arrays
const denormalizedBoxes: any[] = [];
for (const b of boxHistory) {
if (Array.isArray(b.bbox_2d) && Array.isArray(b.bbox_2d[0])) {
// Multiple boxes per label
for (const arr of b.bbox_2d) {
if (Array.isArray(arr) && arr.length === 4) {
denormalizedBoxes.push({
...b,
bbox_2d: denormalizeBox(arr, displayWidth, displayHeight)
});
}
}
} else if (Array.isArray(b.bbox_2d) && b.bbox_2d.length === 4) {
// Single box
denormalizedBoxes.push({
...b,
bbox_2d: denormalizeBox(b.bbox_2d, displayWidth, displayHeight)
});
}
}
drawBoundingBoxesOnCanvas(ctx, denormalizedBoxes, { color: "#FF00FF", lineWidth: 4, font: "20px Arial", scaleX: 1, scaleY: 1 });
}
};
draw();
const interval = setInterval(draw, 100);
// Redraw on window resize
const handleResize = () => draw();
window.addEventListener('resize', handleResize);
return () => {
clearInterval(interval);
window.removeEventListener('resize', handleResize);
};
}, [overlayVideoRef, canvasRef]);
// Drawing loop: draws the latest YOLOv8 boxes every frame
React.useEffect(() => {
let running = true;
function drawLoop() {
if (!running) return;
const overlayVideo = overlayVideoRef.current;
const canvas = canvasRef.current;
const processingVideo = processingVideoRef.current;
if (canvas && overlayVideo && processingVideo) {
// Set canvas size to match the visible video
canvas.width = overlayVideo.clientWidth;
canvas.height = overlayVideo.clientHeight;
const ctx = canvas.getContext('2d');
if (ctx) {
ctx.clearRect(0, 0, canvas.width, canvas.height);
// Draw all YOLOv8 boxes from last detection
const yoloBoxes = lastYoloBoxesRef.current;
yoloBoxes.forEach((obj: any) => {
// Scale from YOLOv8 input size to canvas size
const scaleX = canvas.width / YOLOV8_INPUT_WIDTH;
const scaleY = canvas.height / YOLOV8_INPUT_HEIGHT;
const [x1, y1, x2, y2] = obj.bbox;
const drawX = x1 * scaleX;
const drawY = y1 * scaleY;
const drawW = (x2 - x1) * scaleX;
const drawH = (y2 - y1) * scaleY;
ctx.strokeStyle = '#00FFFF';
ctx.lineWidth = 5;
ctx.strokeRect(drawX, drawY, drawW, drawH);
ctx.font = 'bold 22px Arial';
// Draw YOLOv8 label and confidence
const yoloLabel = obj.label || '';
const yoloScore = obj.score !== undefined ? ` ${(obj.score * 100).toFixed(1)}%` : '';
const yoloText = `${yoloLabel}${yoloScore}`;
ctx.fillStyle = 'rgba(0,0,0,0.7)';
const yoloTextWidth = ctx.measureText(yoloText).width + 8;
ctx.fillRect(drawX - 4, drawY - 24, yoloTextWidth, 26);
ctx.fillStyle = '#00FFFF';
ctx.fillText(yoloText, drawX, drawY - 4);
// Draw FastVLM annotation below the box if available
if (hasAnnotation(obj)) {
ctx.font = 'bold 18px Arial';
ctx.fillStyle = 'rgba(0,0,0,0.7)';
const annTextWidth = ctx.measureText(obj.annotation).width + 8;
ctx.fillRect(drawX - 4, drawY + drawH + 4, annTextWidth, 24);
ctx.fillStyle = '#00FFFF';
ctx.fillText(obj.annotation, drawX, drawY + drawH + 22);
}
});
}
}
requestAnimationFrame(drawLoop);
}
drawLoop();
return () => { running = false; };
}, [overlayVideoRef, canvasRef, processingVideoRef]);
// YOLOv8 detection loop: runs as fast as possible, updates lastYoloBoxesRef, and triggers FastVLM annotation in the background
const yoloDetectionLoop = async () => {
if (!processingLoopRef.current) return;
if (isYoloBusy) {
requestAnimationFrame(yoloDetectionLoop);
return;
}
isYoloBusy = true;
try {
const processingVideo = processingVideoRef.current;
if (!processingVideo || processingVideo.paused || processingVideo.ended || processingVideo.videoWidth === 0) {
isYoloBusy = false;
requestAnimationFrame(yoloDetectionLoop);
return;
}
// Run YOLOv8 detection
const session = await loadYoloModel();
const inputTensor = preprocessFrameToTensor(processingVideo);
const feeds: Record<string, ort.Tensor> = {};
feeds[session.inputNames[0]] = inputTensor;
const results = await session.run(feeds);
const output = results[session.outputNames[0]];
const detections = postprocessYoloOutput(output);
lastYoloBoxesRef.current = detections;
// Run FastVLM on the full frame (wait for YOLOv8 to finish)
await runInference(processingVideo, prompt, (output: string) => {
setDebugOutput(output);
});
} catch (err) {
console.error('YOLOv8+FastVLM error:', err);
} finally {
isYoloBusy = false;
requestAnimationFrame(yoloDetectionLoop);
}
};
// Add this effect after the processing loop and toggle handlers
useEffect(() => {
// Stop processing loop on video source change or processing toggle
processingLoopRef.current = false;
// Start processing loop for the correct video after refs update
setTimeout(() => {
if (videoProcessing && uploadedFile && isVideoFile(uploadedFile)) {
processingLoopRef.current = true;
yoloDetectionLoop();
} else if (exampleProcessing && !uploadedFile) {
processingLoopRef.current = true;
yoloDetectionLoop();
}
}, 100);
// eslint-disable-next-line
}, [uploadedFile, videoProcessing, exampleProcessing]);
return (
<div className="absolute inset-0 text-white">
<div className="fixed top-0 left-0 w-full bg-gray-900 text-white text-center py-2 z-50">
{isLoading ? "Loading model..." : isLoaded ? "Model loaded" : modelError ? `Model error: ${modelError}` : "Model not loaded"}
</div>
<div className="text-center text-sm text-blue-300 mt-2">{inferenceStatus}</div>
<div className="flex flex-col items-center justify-center h-full w-full">
{/* Mode Selector */}
<div className="mb-6">
<div className="flex space-x-4">
{MODES.map((m) => (
<button
key={m}
className={`px-6 py-2 rounded-lg font-semibold transition-all duration-200 ${
mode === m ? "bg-blue-600 text-white" : "bg-gray-700 text-gray-300 hover:bg-blue-500"
}`}
onClick={() => setMode(m)}
>
{m}
</button>
))}
</div>
</div>
{/* Mode Content */}
<div className="w-full max-w-2xl flex-1 flex flex-col items-center justify-center">
{mode === "File" && (
<div className="w-full text-center flex flex-col items-center">
<div className="mb-4 w-full max-w-xl">
<label className="block text-left mb-2 font-medium">Detection Prompt:</label>
<textarea
className="w-full p-2 rounded-lg text-black"
rows={3}
value={prompt}
onChange={(e) => setPrompt(e.target.value)}
/>
</div>
<div className="mb-4 w-full max-w-xl">
<input
type="file"
accept="image/*,video/*"
onChange={handleFileChange}
className="block w-full text-sm text-gray-300 file:mr-4 file:py-2 file:px-4 file:rounded-lg file:border-0 file:text-sm file:font-semibold file:bg-blue-600 file:text-white hover:file:bg-blue-700"
/>
</div>
{/* Add toggle button above video area */}
<div className="mb-2 w-full max-w-xl flex justify-end">
<button
className={`px-4 py-1 rounded bg-gray-700 text-white text-xs font-semibold ${showProcessingVideo ? 'bg-blue-600' : ''}`}
onClick={() => setShowProcessingVideo(v => !v)}
type="button"
>
{showProcessingVideo ? 'Hide' : 'Show'} Processed Video
</button>
</div>
{/* Show uploaded image */}
{uploadedFile && isImageFile(uploadedFile) && (
<div className="relative w-full max-w-xl">
<img
ref={imageRef}
src={uploadedUrl}
alt="Uploaded"
className="w-full rounded-lg shadow-lg mb-2"
style={{ background: "#222" }}
/>
<canvas
ref={canvasRef}
className="absolute top-0 left-0 w-full h-full pointer-events-none"
style={{ zIndex: 10, pointerEvents: "none" }}
/>
<button
className="mt-4 px-6 py-2 rounded-lg bg-blue-600 text-white font-semibold"
onClick={handleProcessImage}
disabled={processing}
>
{processing ? "Processing..." : imageProcessed ? "Reprocess Image" : "Process Image"}
</button>
</div>
)}
{/* Show uploaded video */}
{uploadedFile && isVideoFile(uploadedFile) && (
<div className="relative w-full max-w-xl" style={{ position: 'relative' }}>
{/* Visible overlay video for user */}
<video
ref={overlayVideoRef}
src={uploadedUrl}
controls
autoPlay
loop
muted
playsInline
className="w-full rounded-lg shadow-lg mb-2"
style={{ background: "#222", display: "block" }}
crossOrigin="anonymous"
onLoadedMetadata={(e: React.SyntheticEvent<HTMLVideoElement, Event>) => {
if (canvasRef.current) {
canvasRef.current.width = e.currentTarget.clientWidth;
canvasRef.current.height = e.currentTarget.clientHeight;
}
}}
onResize={() => {
if (canvasRef.current && overlayVideoRef.current) {
canvasRef.current.width = overlayVideoRef.current.clientWidth;
canvasRef.current.height = overlayVideoRef.current.clientHeight;
}
}}
/>
{/* Canvas overlay */}
<canvas
ref={canvasRef}
style={{
position: "absolute",
top: 0,
left: 0,
width: "100%",
height: "100%",
zIndex: 100,
pointerEvents: "none",
display: "block"
}}
width={overlayVideoRef.current?.clientWidth || 640}
height={overlayVideoRef.current?.clientHeight || 480}
/>
{/* Hidden or visible processing video for FastVLM/canvas */}
<video
ref={processingVideoRef}
src={uploadedUrl}
autoPlay
loop
muted
playsInline
crossOrigin="anonymous"
style={{ display: showProcessingVideo ? "block" : "none", width: "100%", marginTop: 8, borderRadius: 8, boxShadow: '0 2px 8px #0004' }}
onLoadedData={e => { e.currentTarget.play().catch(() => {}); }}
/>
<button
className="mt-4 px-6 py-2 rounded-lg bg-blue-600 text-white font-semibold"
onClick={handleToggleVideoProcessing}
>
{videoProcessing ? "Stop Processing" : "Start Processing"}
</button>
</div>
)}
{/* Show example video if no file uploaded */}
{!uploadedFile && (
<div className="relative w-full max-w-xl" style={{ position: 'relative' }}>
{/* Visible overlay video for user */}
<video
ref={overlayVideoRef}
src={EXAMPLE_VIDEO_URL}
controls
autoPlay
loop
muted
playsInline
className="w-full rounded-lg shadow-lg mb-2"
style={{ background: "#222", display: "block" }}
crossOrigin="anonymous"
/>
{/* Canvas overlay */}
<canvas
ref={canvasRef}
style={{
position: "absolute",
top: 0,
left: 0,
width: "100%",
height: "100%",
zIndex: 100,
pointerEvents: "none",
display: "block"
}}
width={overlayVideoRef.current?.clientWidth || 640}
height={overlayVideoRef.current?.clientHeight || 480}
/>
{/* Hidden or visible processing video for FastVLM/canvas */}
<video
ref={processingVideoRef}
src={EXAMPLE_VIDEO_URL}
autoPlay
loop
muted
playsInline
crossOrigin="anonymous"
style={{ display: showProcessingVideo ? "block" : "none", width: "100%", marginTop: 8, borderRadius: 8, boxShadow: '0 2px 8px #0004' }}
onLoadedData={e => { e.currentTarget.play().catch(() => {}); }}
/>
<button
className="mt-4 px-6 py-2 rounded-lg bg-blue-600 text-white font-semibold"
onClick={handleToggleExampleProcessing}
>
{exampleProcessing ? "Stop Processing" : "Start Processing"}
</button>
</div>
)}
{processing && <div className="text-blue-400 mt-2">Processing frame...</div>}
{error && <div className="text-red-400 mt-2">Error: {error}</div>}
<button
className="mt-4 px-6 py-2 rounded-lg bg-gray-600 text-white font-semibold"
onClick={handleTestDrawBox}
>
Test Draw Box
</button>
<div className="mt-2 p-2 bg-gray-800 rounded text-xs">
<div>Canvas: {canvasDims ? `${canvasDims.w}x${canvasDims.h}` : "-"} | Video: {videoDims ? `${videoDims.w}x${videoDims.h}` : "-"}</div>
<div>Raw Model Output:</div>
<pre className="overflow-x-auto max-h-32 whitespace-pre-wrap">{debugOutput}</pre>
</div>
</div>
)}
</div>
</div>
</div>
);
} |