File size: 30,866 Bytes
b7c497f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96b5215
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
import * as React from "react";
import { useState, useRef, useEffect } from "react";
import { useVLMContext } from "../context/useVLMContext";
import { drawBoundingBoxesOnCanvas } from "./BoxAnnotator";

const MODES = ["File"] as const;
type Mode = typeof MODES[number];

const EXAMPLE_VIDEO_URL = "https://huggingface.co/Quazim0t0/yolov8-onnx/resolve/main/sample.mp4";
const EXAMPLE_PROMPT = "Describe the video";

function isImageFile(file: File) {
  return file.type.startsWith("image/");
}
function isVideoFile(file: File) {
  return file.type.startsWith("video/");
}

function denormalizeBox(box: number[], width: number, height: number) {
  // If all values are between 0 and 1, treat as normalized
  if (box.length === 4 && box.every(v => v >= 0 && v <= 1)) {
    return [
      box[0] * width,
      box[1] * height,
      box[2] * width,
      box[3] * height
    ];
  }
  return box;
}

// Add this robust fallback parser near the top
function extractAllBoundingBoxes(output: string): { label: string, bbox_2d: number[] }[] {
  // Try to parse as JSON first
  try {
    const parsed = JSON.parse(output);
    if (Array.isArray(parsed)) {
      const result: { label: string, bbox_2d: number[] }[] = [];
      for (const obj of parsed) {
        if (obj && obj.label && Array.isArray(obj.bbox_2d)) {
          if (Array.isArray(obj.bbox_2d[0])) {
            for (const arr of obj.bbox_2d) {
              if (Array.isArray(arr) && arr.length === 4) {
                result.push({ label: obj.label, bbox_2d: arr });
              }
            }
          } else if (obj.bbox_2d.length === 4) {
            result.push({ label: obj.label, bbox_2d: obj.bbox_2d });
          }
        }
      }
      if (result.length > 0) return result;
    }
  } catch (e) {}
  // Fallback: extract all [x1, y1, x2, y2] arrays from the string
  const boxRegex = /\[\s*([0-9.]+)\s*,\s*([0-9.]+)\s*,\s*([0-9.]+)\s*,\s*([0-9.]+)\s*\]/g;
  const boxes: { label: string, bbox_2d: number[] }[] = [];
  let match;
  while ((match = boxRegex.exec(output)) !== null) {
    const arr = [parseFloat(match[1]), parseFloat(match[2]), parseFloat(match[3]), parseFloat(match[4])];
    boxes.push({ label: '', bbox_2d: arr });
  }
  return boxes;
}

// NOTE: You must install onnxruntime-web:
// npm install onnxruntime-web
// @ts-ignore
import * as ort from 'onnxruntime-web';
// If you still get type errors, add a global.d.ts with: declare module 'onnxruntime-web';

// Set your YOLOv8 ONNX model URL here:
const YOLOV8_ONNX_URL = "https://huggingface.co/Quazim0t0/yolov8-onnx/resolve/main/yolov8n.onnx"; // <-- PUT YOUR ONNX FILE URL HERE

// Add these constants to match the YOLOv8 input size
const YOLOV8_INPUT_WIDTH = 640;
const YOLOV8_INPUT_HEIGHT = 480;

// 1. Load the ONNX model once
let yoloSession: ort.InferenceSession | null = null;
// Add a busy flag to prevent concurrent YOLOv8 inferences
let isYoloBusy = false;
async function loadYoloModel() {
  if (!yoloSession) {
    yoloSession = await ort.InferenceSession.create(YOLOV8_ONNX_URL);
  }
  return yoloSession;
}

// COCO class names for YOLOv8
const YOLO_CLASSES: string[] = [
  "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
  "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
  "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
  "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle",
  "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange",
  "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed",
  "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven",
  "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush"
];

// Preprocess video frame to YOLOv8 input tensor [1,3,640,640]
function preprocessFrameToTensor(video: HTMLVideoElement): ort.Tensor {
  const width = 640;
  const height = 480;
  const canvas = document.createElement('canvas');
  canvas.width = width;
  canvas.height = height;
  const ctx = canvas.getContext('2d');
  if (!ctx) throw new Error('Could not get 2D context');
  ctx.drawImage(video, 0, 0, width, height);
  const imageData = ctx.getImageData(0, 0, width, height);
  const { data } = imageData;
  // Convert to Float32Array [1,3,480,640], normalize to [0,1]
  const floatData = new Float32Array(1 * 3 * height * width);
  for (let i = 0; i < width * height; i++) {
    floatData[i] = data[i * 4] / 255; // R
    floatData[i + width * height] = data[i * 4 + 1] / 255; // G
    floatData[i + 2 * width * height] = data[i * 4 + 2] / 255; // B
  }
  return new ort.Tensor('float32', floatData, [1, 3, height, width]);
}

// Update postprocessYoloOutput to remove unused inputWidth and inputHeight parameters
function postprocessYoloOutput(output: ort.Tensor) {
  // output.dims: [1, num_detections, 6]
  const data = output.data;
  const numDetections = output.dims[1];
  const results = [];
  for (let i = 0; i < numDetections; i++) {
    const offset = i * 6;
    const x1 = data[offset];
    const y1 = data[offset + 1];
    const x2 = data[offset + 2];
    const y2 = data[offset + 3];
    const score = data[offset + 4];
    const classId = data[offset + 5];
    if (score < 0.2) continue; // adjust threshold as needed
    results.push({
      bbox: [x1, y1, x2, y2],
      label: YOLO_CLASSES[classId] || `class_${classId}`,
      score
    });
  }
  return results;
}

// Helper type guard for annotation
function hasAnnotation(obj: any): obj is { annotation: string } {
  return typeof obj === 'object' && obj !== null && 'annotation' in obj && typeof obj.annotation === 'string';
}

export default function MultiSourceCaptioningView() {
  const [mode, setMode] = useState<Mode>("File");
  const [videoUrl] = useState<string>(EXAMPLE_VIDEO_URL);
  const [prompt, setPrompt] = useState<string>(EXAMPLE_PROMPT);
  const [processing, setProcessing] = useState(false);
  const [error, setError] = useState<string | null>(null);
  const [uploadedFile, setUploadedFile] = useState<File | null>(null);
  const [uploadedUrl, setUploadedUrl] = useState<string>("");
  const [videoProcessing, setVideoProcessing] = useState(false);
  const [imageProcessed, setImageProcessed] = useState(false);
  const [exampleProcessing, setExampleProcessing] = useState(false);
  const [debugOutput, setDebugOutput] = useState<string>("");
  const [canvasDims, setCanvasDims] = useState<{w:number,h:number}|null>(null);
  const [videoDims, setVideoDims] = useState<{w:number,h:number}|null>(null);
  const [inferenceStatus, setInferenceStatus] = useState<string>("");
  const [showProcessingVideo, setShowProcessingVideo] = useState(false);

  const videoRef = useRef<HTMLVideoElement | null>(null);
  const overlayVideoRef = useRef<HTMLVideoElement | null>(null);
  const processingVideoRef = useRef<HTMLVideoElement | null>(null);
  const canvasRef = useRef<HTMLCanvasElement | null>(null);
  const imageRef = useRef<HTMLImageElement | null>(null);
  const boxHistoryRef = useRef<any[]>([]);
  // Add a ref to store the latest YOLOv8 results (with optional FastVLM annotation)
  const lastYoloBoxesRef = React.useRef<any[]>([]);
  const { isLoaded, isLoading, error: modelError, runInference } = useVLMContext();

  // Remove videoProcessingRef and exampleProcessingRef
  // Add a single processingLoopRef
  const processingLoopRef = React.useRef(false);

  const processVideoLoop = async () => {
    if (!processingLoopRef.current) return;
    if (isYoloBusy) {
      // Optionally log: "Inference already running, skipping frame"
      requestAnimationFrame(processVideoLoop);
      return;
    }
    await yoloDetectionLoop(); // Replaced processVideoFrame with yoloDetectionLoop
    // Schedule the next frame as soon as possible
    requestAnimationFrame(processVideoLoop);
  };
  const processExampleLoop = async () => {
    while (processingLoopRef.current) {
      await yoloDetectionLoop(); // Replaced processVideoFrame with yoloDetectionLoop
      await new Promise(res => setTimeout(res, 1000));
    }
  };

  // Set your YOLOv8 ONNX backend API endpoint here:
  // const YOLOV8_API_URL = "https://YOUR_YOLOV8_BACKEND_URL_HERE/detect"; // <-- PUT YOUR ENDPOINT HERE

  // Add this useEffect for overlay video synchronization
  useEffect(() => {
    const main = videoRef.current;
    const overlay = overlayVideoRef.current;
    if (!main || !overlay) return;
    // Sync play/pause
    const onPlay = () => { if (overlay.paused) overlay.play(); };
    const onPause = () => { if (!overlay.paused) overlay.pause(); };
    // Sync seeking and time
    const onSeekOrTime = () => {
      if (Math.abs(main.currentTime - overlay.currentTime) > 0.05) {
        overlay.currentTime = main.currentTime;
      }
    };
    main.addEventListener('play', onPlay);
    main.addEventListener('pause', onPause);
    main.addEventListener('seeked', onSeekOrTime);
    main.addEventListener('timeupdate', onSeekOrTime);
    // Clean up
    return () => {
      main.removeEventListener('play', onPlay);
      main.removeEventListener('pause', onPause);
      main.removeEventListener('seeked', onSeekOrTime);
      main.removeEventListener('timeupdate', onSeekOrTime);
    };
  }, [videoRef, overlayVideoRef, uploadedUrl, videoUrl, mode]);

  useEffect(() => {
    if ((mode === "File") && processingVideoRef.current) {
      processingVideoRef.current.play().catch(() => {});
    }
  }, [mode, videoUrl, uploadedUrl]);

  // Remove old prompt-based box extraction logic and only use the above for video frames.

  const handleFileChange = (e: React.ChangeEvent<HTMLInputElement>) => {
    const file = e.target.files?.[0] || null;
    setUploadedFile(file);
    setUploadedUrl(file ? URL.createObjectURL(file) : "");
    setError(null);
    setImageProcessed(false);
    setVideoProcessing(false);
    setExampleProcessing(false);
  };

  // Webcam mode: process frames with setInterval
  useEffect(() => {
    if (mode !== "File" || !isLoaded || !uploadedFile || !isVideoFile(uploadedFile) || !videoProcessing) return;
    processVideoLoop();
  }, [mode, isLoaded, prompt, runInference, uploadedFile, videoProcessing]);

  // Example video mode: process frames with setInterval
  useEffect(() => {
    if (mode !== "File" || uploadedFile || !isLoaded || !exampleProcessing) return;
    processExampleLoop();
  }, [mode, isLoaded, prompt, runInference, uploadedFile, exampleProcessing]);

  // File mode: process uploaded image (only on button click)
  const handleProcessImage = async () => {
    if (!isLoaded || !uploadedFile || !isImageFile(uploadedFile) || !imageRef.current || !canvasRef.current) return;
    const img = imageRef.current;
    const canvas = canvasRef.current;
    canvas.width = img.naturalWidth;
    canvas.height = img.naturalHeight;
    setCanvasDims({w:canvas.width,h:canvas.height});
    setVideoDims({w:img.naturalWidth,h:img.naturalHeight});
    const ctx = canvas.getContext("2d");
    if (!ctx) return;
    ctx.drawImage(img, 0, 0, canvas.width, canvas.height);
    setProcessing(true);
    setError(null);
    setInferenceStatus("Running inference...");
    await runInference(img, prompt, (output: string) => {
      setDebugOutput(output);
      setInferenceStatus("Inference complete.");
      ctx.drawImage(img, 0, 0, canvas.width, canvas.height);
      let boxes = extractAllBoundingBoxes(output);
      console.log("Model output:", output);
      console.log("Boxes after normalization:", boxes);
      console.log("Canvas size:", canvas.width, canvas.height);
      if (boxes.length > 0) {
        const [x1, y1, x2, y2] = boxes[0].bbox_2d;
        console.log("First box coords:", x1, y1, x2, y2);
      }
      if (boxes.length === 0) setInferenceStatus("No boxes detected or model output invalid.");
      if (Array.isArray(boxes) && boxes.length > 0) {
        const scaleX = canvas.width / img.naturalWidth;
        const scaleY = canvas.height / img.naturalHeight;
        drawBoundingBoxesOnCanvas(ctx, boxes, { scaleX, scaleY });
      }
      setImageProcessed(true);
    });
    setProcessing(false);
  };

  // File mode: process uploaded video frames (start/stop)
  const handleToggleVideoProcessing = () => {
    setVideoProcessing((prev: boolean) => {
      const next = !prev;
      // Always stop all loops before starting
      processingLoopRef.current = false;
      setTimeout(() => {
        if (next) {
          processingLoopRef.current = true;
          processVideoLoop();
        }
      }, 50);
      return next;
    });
  };

  // Handle start/stop for example video processing
  const handleToggleExampleProcessing = () => {
    setExampleProcessing((prev: boolean) => {
      const next = !prev;
      // Always stop all loops before starting
      processingLoopRef.current = false;
      setTimeout(() => {
        if (next) {
          processingLoopRef.current = true;
          processVideoLoop();
        }
      }, 50);
      return next;
    });
  };

  // Test draw box function
  const handleTestDrawBox = () => {
    if (!canvasRef.current) return;
    const canvas = canvasRef.current;
    const ctx = canvas.getContext("2d");
    if (!ctx) return;
    ctx.clearRect(0, 0, canvas.width, canvas.height);
    ctx.strokeStyle = "#FF00FF";
    ctx.lineWidth = 4;
    ctx.strokeRect(40, 40, Math.max(40,canvas.width/4), Math.max(40,canvas.height/4));
    ctx.font = "20px Arial";
    ctx.fillStyle = "#FF00FF";
    ctx.fillText("Test Box", 50, 35);
  };

  useEffect(() => {
    const draw = () => {
      const overlayVideo = overlayVideoRef.current;
      const canvas = canvasRef.current;
      if (!overlayVideo || !canvas) return;
      const displayWidth = overlayVideo.clientWidth;
      const displayHeight = overlayVideo.clientHeight;
      canvas.width = displayWidth;
      canvas.height = displayHeight;
      const ctx = canvas.getContext("2d");
      if (!ctx) return;
      ctx.clearRect(0, 0, canvas.width, canvas.height);
      const now = Date.now();
      const boxHistory = boxHistoryRef.current.filter((b: any) => now - b.timestamp < 2000);
      if (boxHistory.length > 0) {
        // Fix: Draw all boxes, even if bbox_2d is an array of arrays
        const denormalizedBoxes: any[] = [];
        for (const b of boxHistory) {
          if (Array.isArray(b.bbox_2d) && Array.isArray(b.bbox_2d[0])) {
            // Multiple boxes per label
            for (const arr of b.bbox_2d) {
              if (Array.isArray(arr) && arr.length === 4) {
                denormalizedBoxes.push({
                  ...b,
                  bbox_2d: denormalizeBox(arr, displayWidth, displayHeight)
                });
              }
            }
          } else if (Array.isArray(b.bbox_2d) && b.bbox_2d.length === 4) {
            // Single box
            denormalizedBoxes.push({
              ...b,
              bbox_2d: denormalizeBox(b.bbox_2d, displayWidth, displayHeight)
            });
          }
        }
        drawBoundingBoxesOnCanvas(ctx, denormalizedBoxes, { color: "#FF00FF", lineWidth: 4, font: "20px Arial", scaleX: 1, scaleY: 1 });
      }
    };
    draw();
    const interval = setInterval(draw, 100);
    // Redraw on window resize
    const handleResize = () => draw();
    window.addEventListener('resize', handleResize);
    return () => {
      clearInterval(interval);
      window.removeEventListener('resize', handleResize);
    };
  }, [overlayVideoRef, canvasRef]);

  // Drawing loop: draws the latest YOLOv8 boxes every frame
  React.useEffect(() => {
    let running = true;
    function drawLoop() {
      if (!running) return;
      const overlayVideo = overlayVideoRef.current;
      const canvas = canvasRef.current;
      const processingVideo = processingVideoRef.current;
      if (canvas && overlayVideo && processingVideo) {
        // Set canvas size to match the visible video
        canvas.width = overlayVideo.clientWidth;
        canvas.height = overlayVideo.clientHeight;
        const ctx = canvas.getContext('2d');
        if (ctx) {
          ctx.clearRect(0, 0, canvas.width, canvas.height);
          // Draw all YOLOv8 boxes from last detection
          const yoloBoxes = lastYoloBoxesRef.current;
          yoloBoxes.forEach((obj: any) => {
            // Scale from YOLOv8 input size to canvas size
            const scaleX = canvas.width / YOLOV8_INPUT_WIDTH;
            const scaleY = canvas.height / YOLOV8_INPUT_HEIGHT;
            const [x1, y1, x2, y2] = obj.bbox;
            const drawX = x1 * scaleX;
            const drawY = y1 * scaleY;
            const drawW = (x2 - x1) * scaleX;
            const drawH = (y2 - y1) * scaleY;
            ctx.strokeStyle = '#00FFFF';
            ctx.lineWidth = 5;
            ctx.strokeRect(drawX, drawY, drawW, drawH);
            ctx.font = 'bold 22px Arial';
            // Draw YOLOv8 label and confidence
            const yoloLabel = obj.label || '';
            const yoloScore = obj.score !== undefined ? ` ${(obj.score * 100).toFixed(1)}%` : '';
            const yoloText = `${yoloLabel}${yoloScore}`;
            ctx.fillStyle = 'rgba(0,0,0,0.7)';
            const yoloTextWidth = ctx.measureText(yoloText).width + 8;
            ctx.fillRect(drawX - 4, drawY - 24, yoloTextWidth, 26);
            ctx.fillStyle = '#00FFFF';
            ctx.fillText(yoloText, drawX, drawY - 4);
            // Draw FastVLM annotation below the box if available
            if (hasAnnotation(obj)) {
              ctx.font = 'bold 18px Arial';
              ctx.fillStyle = 'rgba(0,0,0,0.7)';
              const annTextWidth = ctx.measureText(obj.annotation).width + 8;
              ctx.fillRect(drawX - 4, drawY + drawH + 4, annTextWidth, 24);
              ctx.fillStyle = '#00FFFF';
              ctx.fillText(obj.annotation, drawX, drawY + drawH + 22);
            }
          });
        }
      }
      requestAnimationFrame(drawLoop);
    }
    drawLoop();
    return () => { running = false; };
  }, [overlayVideoRef, canvasRef, processingVideoRef]);

  // YOLOv8 detection loop: runs as fast as possible, updates lastYoloBoxesRef, and triggers FastVLM annotation in the background
  const yoloDetectionLoop = async () => {
    if (!processingLoopRef.current) return;
    if (isYoloBusy) {
      requestAnimationFrame(yoloDetectionLoop);
      return;
    }
    isYoloBusy = true;
    try {
      const processingVideo = processingVideoRef.current;
      if (!processingVideo || processingVideo.paused || processingVideo.ended || processingVideo.videoWidth === 0) {
        isYoloBusy = false;
        requestAnimationFrame(yoloDetectionLoop);
        return;
      }
      // Run YOLOv8 detection
      const session = await loadYoloModel();
      const inputTensor = preprocessFrameToTensor(processingVideo);
      const feeds: Record<string, ort.Tensor> = {};
      feeds[session.inputNames[0]] = inputTensor;
      const results = await session.run(feeds);
      const output = results[session.outputNames[0]];
      const detections = postprocessYoloOutput(output);
      lastYoloBoxesRef.current = detections;
      // Run FastVLM on the full frame (wait for YOLOv8 to finish)
      await runInference(processingVideo, prompt, (output: string) => {
        setDebugOutput(output);
      });
    } catch (err) {
      console.error('YOLOv8+FastVLM error:', err);
    } finally {
      isYoloBusy = false;
      requestAnimationFrame(yoloDetectionLoop);
    }
  };

  // Add this effect after the processing loop and toggle handlers
  useEffect(() => {
    // Stop processing loop on video source change or processing toggle
    processingLoopRef.current = false;
    // Start processing loop for the correct video after refs update
    setTimeout(() => {
      if (videoProcessing && uploadedFile && isVideoFile(uploadedFile)) {
        processingLoopRef.current = true;
        yoloDetectionLoop();
      } else if (exampleProcessing && !uploadedFile) {
        processingLoopRef.current = true;
        yoloDetectionLoop();
      }
    }, 100);
    // eslint-disable-next-line
  }, [uploadedFile, videoProcessing, exampleProcessing]);

  return (
    <div className="absolute inset-0 text-white">

      <div className="fixed top-0 left-0 w-full bg-gray-900 text-white text-center py-2 z-50">

        {isLoading ? "Loading model..." : isLoaded ? "Model loaded" : modelError ? `Model error: ${modelError}` : "Model not loaded"}

      </div>

      <div className="text-center text-sm text-blue-300 mt-2">{inferenceStatus}</div>

      <div className="flex flex-col items-center justify-center h-full w-full">

        {/* Mode Selector */}

        <div className="mb-6">

          <div className="flex space-x-4">

            {MODES.map((m) => (

              <button

                key={m}

                className={`px-6 py-2 rounded-lg font-semibold transition-all duration-200 ${

                  mode === m ? "bg-blue-600 text-white" : "bg-gray-700 text-gray-300 hover:bg-blue-500"

                }`}

                onClick={() => setMode(m)}

              >

                {m}

              </button>

            ))}

          </div>

        </div>



        {/* Mode Content */}

        <div className="w-full max-w-2xl flex-1 flex flex-col items-center justify-center">

          {mode === "File" && (

            <div className="w-full text-center flex flex-col items-center">

              <div className="mb-4 w-full max-w-xl">

                <label className="block text-left mb-2 font-medium">Detection Prompt:</label>

                <textarea

                  className="w-full p-2 rounded-lg text-black"

                  rows={3}

                  value={prompt}

                  onChange={(e) => setPrompt(e.target.value)}

                />

              </div>

              <div className="mb-4 w-full max-w-xl">

                <input

                  type="file"

                  accept="image/*,video/*"

                  onChange={handleFileChange}

                  className="block w-full text-sm text-gray-300 file:mr-4 file:py-2 file:px-4 file:rounded-lg file:border-0 file:text-sm file:font-semibold file:bg-blue-600 file:text-white hover:file:bg-blue-700"

                />

              </div>

              {/* Add toggle button above video area */}

              <div className="mb-2 w-full max-w-xl flex justify-end">

                <button

                  className={`px-4 py-1 rounded bg-gray-700 text-white text-xs font-semibold ${showProcessingVideo ? 'bg-blue-600' : ''}`}

                  onClick={() => setShowProcessingVideo(v => !v)}

                  type="button"

                >

                  {showProcessingVideo ? 'Hide' : 'Show'} Processed Video

                </button>

              </div>

              {/* Show uploaded image */}

              {uploadedFile && isImageFile(uploadedFile) && (

                <div className="relative w-full max-w-xl">

                  <img

                    ref={imageRef}

                    src={uploadedUrl}

                    alt="Uploaded"

                    className="w-full rounded-lg shadow-lg mb-2"

                    style={{ background: "#222" }}

                  />

                  <canvas

                    ref={canvasRef}

                    className="absolute top-0 left-0 w-full h-full pointer-events-none"

                    style={{ zIndex: 10, pointerEvents: "none" }}

                  />

                  <button

                    className="mt-4 px-6 py-2 rounded-lg bg-blue-600 text-white font-semibold"

                    onClick={handleProcessImage}

                    disabled={processing}

                  >

                    {processing ? "Processing..." : imageProcessed ? "Reprocess Image" : "Process Image"}

                  </button>

                </div>

              )}

              {/* Show uploaded video */}

              {uploadedFile && isVideoFile(uploadedFile) && (

                <div className="relative w-full max-w-xl" style={{ position: 'relative' }}>

                  {/* Visible overlay video for user */}

                  <video

                    ref={overlayVideoRef}

                    src={uploadedUrl}

                    controls

                    autoPlay

                    loop

                    muted

                    playsInline

                    className="w-full rounded-lg shadow-lg mb-2"

                    style={{ background: "#222", display: "block" }}

                    crossOrigin="anonymous"

                    onLoadedMetadata={(e: React.SyntheticEvent<HTMLVideoElement, Event>) => {

                      if (canvasRef.current) {

                        canvasRef.current.width = e.currentTarget.clientWidth;

                        canvasRef.current.height = e.currentTarget.clientHeight;

                      }

                    }}

                    onResize={() => {

                      if (canvasRef.current && overlayVideoRef.current) {

                        canvasRef.current.width = overlayVideoRef.current.clientWidth;

                        canvasRef.current.height = overlayVideoRef.current.clientHeight;

                      }

                    }}

                  />

                  {/* Canvas overlay */}

                  <canvas

                    ref={canvasRef}

                    style={{

                      position: "absolute",

                      top: 0,

                      left: 0,

                      width: "100%",

                      height: "100%",

                      zIndex: 100,

                      pointerEvents: "none",

                      display: "block"

                    }}

                    width={overlayVideoRef.current?.clientWidth || 640}

                    height={overlayVideoRef.current?.clientHeight || 480}

                  />

                  {/* Hidden or visible processing video for FastVLM/canvas */}

                  <video

                    ref={processingVideoRef}

                    src={uploadedUrl}

                    autoPlay

                    loop

                    muted

                    playsInline

                    crossOrigin="anonymous"

                    style={{ display: showProcessingVideo ? "block" : "none", width: "100%", marginTop: 8, borderRadius: 8, boxShadow: '0 2px 8px #0004' }}

                    onLoadedData={e => { e.currentTarget.play().catch(() => {}); }}

                  />

                  <button

                    className="mt-4 px-6 py-2 rounded-lg bg-blue-600 text-white font-semibold"

                    onClick={handleToggleVideoProcessing}

                  >

                    {videoProcessing ? "Stop Processing" : "Start Processing"}

                  </button>

                </div>

              )}

              {/* Show example video if no file uploaded */}

              {!uploadedFile && (

                <div className="relative w-full max-w-xl" style={{ position: 'relative' }}>

                  {/* Visible overlay video for user */}

                  <video

                    ref={overlayVideoRef}

                    src={EXAMPLE_VIDEO_URL}

                    controls

                    autoPlay

                    loop

                    muted

                    playsInline

                    className="w-full rounded-lg shadow-lg mb-2"

                    style={{ background: "#222", display: "block" }}

                    crossOrigin="anonymous"

                  />

                  {/* Canvas overlay */}

                  <canvas

                    ref={canvasRef}

                    style={{

                      position: "absolute",

                      top: 0,

                      left: 0,

                      width: "100%",

                      height: "100%",

                      zIndex: 100,

                      pointerEvents: "none",

                      display: "block"

                    }}

                    width={overlayVideoRef.current?.clientWidth || 640}

                    height={overlayVideoRef.current?.clientHeight || 480}

                  />

                  {/* Hidden or visible processing video for FastVLM/canvas */}

                  <video

                    ref={processingVideoRef}

                    src={EXAMPLE_VIDEO_URL}

                    autoPlay

                    loop

                    muted

                    playsInline

                    crossOrigin="anonymous"

                    style={{ display: showProcessingVideo ? "block" : "none", width: "100%", marginTop: 8, borderRadius: 8, boxShadow: '0 2px 8px #0004' }}

                    onLoadedData={e => { e.currentTarget.play().catch(() => {}); }}

                  />

                  <button

                    className="mt-4 px-6 py-2 rounded-lg bg-blue-600 text-white font-semibold"

                    onClick={handleToggleExampleProcessing}

                  >

                    {exampleProcessing ? "Stop Processing" : "Start Processing"}

                  </button>

                </div>

              )}

              {processing && <div className="text-blue-400 mt-2">Processing frame...</div>}

              {error && <div className="text-red-400 mt-2">Error: {error}</div>}

              <button

                className="mt-4 px-6 py-2 rounded-lg bg-gray-600 text-white font-semibold"

                onClick={handleTestDrawBox}

              >

                Test Draw Box

              </button>

              <div className="mt-2 p-2 bg-gray-800 rounded text-xs">

                <div>Canvas: {canvasDims ? `${canvasDims.w}x${canvasDims.h}` : "-"} | Video: {videoDims ? `${videoDims.w}x${videoDims.h}` : "-"}</div>

                <div>Raw Model Output:</div>

                <pre className="overflow-x-auto max-h-32 whitespace-pre-wrap">{debugOutput}</pre>

              </div>

            </div>

          )}

        </div>

      </div>

    </div>

  );

}