File size: 6,784 Bytes
55a8ac7
 
 
23f819d
55a8ac7
 
23f819d
 
55a8ac7
23f819d
d5f7879
 
 
 
 
 
 
 
 
55a8ac7
 
 
d5f7879
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55a8ac7
 
 
 
d5f7879
23f819d
 
 
 
 
 
 
 
 
55a8ac7
 
d5f7879
 
 
 
 
23f819d
55a8ac7
 
 
 
 
23f819d
55a8ac7
d5f7879
23f819d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55a8ac7
 
 
 
 
 
 
23f819d
55a8ac7
23f819d
 
55a8ac7
23f819d
 
 
 
55a8ac7
 
 
23f819d
 
 
55a8ac7
 
 
23f819d
55a8ac7
23f819d
d5f7879
 
55a8ac7
 
 
 
23f819d
 
d5f7879
23f819d
55a8ac7
 
23f819d
 
 
 
 
55a8ac7
 
 
 
23f819d
 
 
 
 
 
 
 
 
 
55a8ac7
 
 
 
 
23f819d
 
 
 
 
 
 
55a8ac7
23f819d
 
 
 
 
 
 
55a8ac7
23f819d
 
 
 
 
 
 
 
55a8ac7
23f819d
 
 
 
 
 
 
55a8ac7
 
 
23f819d
 
55a8ac7
 
d5f7879
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import spaces
import gradio as gr
import numpy as np
import PIL.Image
from PIL import Image
import random
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
from compel import Compel, ReturnedEmbeddingsType
from huggingface_hub import login
import os

# Add your Hugging Face token here or set it as an environment variable
HF_TOKEN = os.getenv("HF_TOKEN")  # Get from environment variable
# Or directly: HF_TOKEN = "hf_your_token_here"

if HF_TOKEN:
    login(token=HF_TOKEN)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

try:
    # Make sure to use torch.float16 consistently throughout the pipeline
    pipe = StableDiffusionXLPipeline.from_pretrained(
        "votepurchase/waiREALCN_v14",
        torch_dtype=torch.float16,
        variant="fp16",  # Explicitly use fp16 variant
        use_safetensors=True,  # Use safetensors if available
        use_auth_token=HF_TOKEN  # Pass token to download
    )

    pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
    pipe.to(device)

    # Force all components to use the same dtype
    pipe.text_encoder.to(torch.float16)
    pipe.text_encoder_2.to(torch.float16)
    pipe.vae.to(torch.float16)
    pipe.unet.to(torch.float16)

    # Initialize Compel for long prompt processing
    compel = Compel(
        tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
        text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
        returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
        requires_pooled=[False, True],
        truncate_long_prompts=False
    )
    
    model_loaded = True
except Exception as e:
    print(f"Failed to load model: {e}")
    model_loaded = False
    pipe = None
    compel = None

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1216

# Simple long prompt processing function
def process_long_prompt(prompt, negative_prompt=""):
    """Simple long prompt processing using Compel"""
    try:
        conditioning, pooled = compel([prompt, negative_prompt])
        return conditioning, pooled
    except Exception as e:
        print(f"Long prompt processing failed: {e}, falling back to standard processing")
        return None, None
    
@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
    if not model_loaded:
        error_img = Image.new('RGB', (width, height), color=(50, 50, 50))
        return error_img
    
    # Remove the 60-word limit warning and add long prompt check
    use_long_prompt = len(prompt.split()) > 60 or len(prompt) > 300
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator(device=device).manual_seed(seed)
    
    try:
        # Try long prompt processing first if prompt is long
        if use_long_prompt:
            print("Using long prompt processing...")
            conditioning, pooled = process_long_prompt(prompt, negative_prompt)
            
            if conditioning is not None:
                output_image = pipe(
                    prompt_embeds=conditioning[0:1],
                    pooled_prompt_embeds=pooled[0:1],
                    negative_prompt_embeds=conditioning[1:2],
                    negative_pooled_prompt_embeds=pooled[1:2],
                    guidance_scale=guidance_scale,
                    num_inference_steps=num_inference_steps,
                    width=width,
                    height=height,
                    generator=generator
                ).images[0]
                return output_image
        
        # Fall back to standard processing
        output_image = pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator
        ).images[0]
        
        return output_image
    except RuntimeError as e:
        print(f"Error during generation: {e}")
        # Return a blank image with error message
        error_img = Image.new('RGB', (width, height), color=(0, 0, 0))
        return error_img


css = """
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:

    with gr.Column(elem_id="col-container"):
        if not model_loaded:
            gr.Markdown("⚠️ **Model failed to load. Please check your Hugging Face token.**")

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt (long prompts are automatically supported)",
                container=False,
            )

            run_button = gr.Button("Run", scale=0)

        result = gr.Image(label="Result", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=False):

            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=20.0,
                    step=0.1,
                    value=7,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=28,
                    step=1,
                    value=28,
                )

    run_button.click(
        fn=infer,
        inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs=[result]
    )

demo.queue().launch()