Spaces:
Sleeping
Sleeping
File size: 20,373 Bytes
6ba0bd9 92fdc45 0530a8b e776a35 0530a8b 03fc26b 0530a8b e776a35 0530a8b 6ba0bd9 92fdc45 6ba0bd9 0530a8b 92fdc45 0530a8b 6ba0bd9 0530a8b 6ba0bd9 e7d38dd 92fdc45 6ba0bd9 92fdc45 0530a8b 03fc26b 0530a8b e776a35 0530a8b e776a35 0530a8b e776a35 0530a8b 3c2c0f5 0530a8b e776a35 0530a8b e776a35 0530a8b e776a35 0530a8b e776a35 0530a8b e776a35 0530a8b e776a35 0530a8b e776a35 0530a8b 92fdc45 0530a8b 92fdc45 0530a8b e776a35 0530a8b e776a35 0530a8b e776a35 0530a8b e776a35 0530a8b e776a35 0530a8b e776a35 0530a8b e776a35 0530a8b e776a35 3c2c0f5 0530a8b e776a35 3c2c0f5 e776a35 0530a8b 3c2c0f5 e776a35 3c2c0f5 0530a8b 3c2c0f5 0530a8b e776a35 0530a8b e776a35 3c2c0f5 0530a8b 3c2c0f5 e776a35 0530a8b e776a35 0530a8b e776a35 0530a8b e776a35 0530a8b 03fc26b 0530a8b e776a35 0530a8b 6ba0bd9 0530a8b e776a35 0530a8b e776a35 92fdc45 0530a8b 92fdc45 0530a8b 92fdc45 0530a8b 92fdc45 0530a8b e776a35 0530a8b 92fdc45 6ba0bd9 0530a8b 92fdc45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
#!/usr/bin/env python3
"""
IRS Publication 1075 Compliance Assistant (Gradio)
Features
- Upload a PDF or DOCX policy/security document and run heuristic checks aligned to IRS Pub. 1075 themes.
- Generate a structured compliance report with findings, gaps, and actionable recommendations.
- Ask detailed Pub. 1075 questions and get answers grounded in the OFFICIAL PDF only:
https://www.irs.gov/pub/irs-pdf/p1075.pdf
The app downloads the PDF at runtime (if internet is available), builds a page-level index,
and cites specific page numbers and the most relevant passages.
Notes
- Do NOT upload real FTI; use redacted/sample docs. This is guidance only, not legal advice.
- Files are handled in memory; the generated report file is written to /tmp for download.
- If the Space has no internet access, Q&A will fall back to a minimal local summary and warn the user.
"""
import io
import os
import re
import json
import time
import math
import tempfile
from datetime import datetime
from typing import List, Dict, Any, Tuple, Optional
import gradio as gr
import requests
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from PyPDF2 import PdfReader
from docx import Document as DocxDocument
APP_TITLE = "IRS Pub. 1075 Compliance Assistant"
APP_TAGLINE = "Upload a policy/security document for heuristic checks and ask detailed Pub. 1075 questions with page citations."
IRS_PUB_1075_URL = "https://www.irs.gov/pub/irs-pdf/p1075.pdf"
WARNING_BANNER = (
"⚠️ Do NOT upload real FTI. This tool references only IRS Publication 1075 "
f"({IRS_PUB_1075_URL}). It provides guidance only, not legal/compliance advice."
)
# --------------------------------------------------------------------------------------
# Knowledge themes for heuristic checks (no external sources beyond Pub. 1075)
# --------------------------------------------------------------------------------------
CHECKS = [
{
"id": "chk_encryption",
"title": "Cryptographic Protections (At Rest & In Transit)",
"patterns_any": [
r"\bencrypt(ed|ion|ing)\b", r"\bTLS\s*1\.2\b", r"\bTLS\s*1\.3\b",
r"\bcryptograph(y|ic)\b", r"\bkey management\b", r"\bkey rotation\b", r"\bFIPS\b"
],
"recommendation": "Document approved cryptography (preferring FIPS-validated modules if applicable), TLS 1.2+ for transmission, and key management (generation, storage, rotation).",
"section": "Encryption & Cryptographic Protections"
},
{
"id": "chk_access",
"title": "Access Control, Least Privilege & MFA",
"patterns_any": [
r"\bMFA\b", r"\bmulti-?factor\b", r"\bleast privilege\b", r"\brole-?based\b",
r"\baccess control\b", r"\bprivileged\b", r"\badmin(istrative)? access\b",
r"\baccount (lifecycle|provisioning|deprovisioning|review)\b"
],
"recommendation": "Enforce least privilege and role-based access. Require MFA for remote and admin access. Define account provisioning, periodic reviews, and timely deprovisioning.",
"section": "Access Control & Multi-Factor Authentication"
},
{
"id": "chk_incident",
"title": "Incident Response & Reporting",
"patterns_any": [
r"\bincident response\b", r"\bbreach\b", r"\bcontainment\b", r"\beradication\b",
r"\brecovery\b", r"\bpost-incident\b", r"\bnotification\b", r"\breport(ing)?\b"
],
"recommendation": "Define and test procedures across detection, escalation, containment, eradication, recovery, and post-incident review. Include notification/reporting timelines.",
"section": "Incident Response"
},
{
"id": "chk_audit",
"title": "Audit Logging & Monitoring",
"patterns_any": [
r"\baudit(ing)?\b", r"\blog(s|ging)?\b", r"\bretention\b",
r"\badmin(istrative)? actions?\b", r"\bintegrity\b", r"\btamper\b", r"\bSIEM\b"
],
"recommendation": "Record access and administrative actions; protect logs from tampering; define retention and review procedures.",
"section": "Audit & Accountability"
},
{
"id": "chk_media",
"title": "Media Protection & Sanitization",
"patterns_any": [
r"\bmedia (sanitization|protection|handling|labeling)\b",
r"\bdispose|disposal|destruct(ion)?\b", r"\bchain of custody\b", r"\btransport\b"
],
"recommendation": "Define labeling, handling, transport, and sanitization/disposal procedures for media that may contain FTI.",
"section": "Media Protection"
},
{
"id": "chk_config",
"title": "Configuration & Vulnerability Management",
"patterns_any": [
r"\bconfiguration management\b", r"\bbaseline\b", r"\bchange control\b",
r"\bpatch(ing)?\b", r"\bvulnerabilit(y|ies)\b", r"\bscan(ning)?\b", r"\bremediation\b"
],
"recommendation": "Maintain baselines, change control, and patch/vulnerability processes. Track remediation timelines.",
"section": "Configuration & Vulnerability Management"
},
{
"id": "chk_contingency",
"title": "Contingency Planning & Backup",
"patterns_any": [
r"\bcontingency\b", r"\bdisaster recovery\b", r"\bDRP\b", r"\bBCP\b",
r"\bbackup(s)?\b", r"\brestore\b", r"\btabletop\b", r"\bexercise\b"
],
"recommendation": "Develop, maintain, and test contingency/DR plans and secure, tested backups with documented RTO/RPO.",
"section": "Contingency Planning"
},
{
"id": "chk_physical",
"title": "Physical & Environmental Security",
"patterns_any": [
r"\bphysical security\b", r"\bdata center\b", r"\bvisitor\b", r"\bbadge\b",
r"\bperimeter\b", r"\bcamera\b", r"\benvironmental\b"
],
"recommendation": "Restrict physical access; implement visitor controls and appropriate environmental safeguards.",
"section": "Physical & Environmental Security"
},
{
"id": "chk_training",
"title": "Security Awareness & Training",
"patterns_any": [
r"\bsecurity awareness\b", r"\btraining\b", r"\bannual\b", r"\brole-based\b",
r"\bprivacy training\b", r"\bFTI training\b"
],
"recommendation": "Provide initial and periodic training; include role-specific content for admins and developers.",
"section": "Awareness & Training"
},
]
# --------------------------------------------------------------------------------------
# PDF fetching and page-level indexing for detailed, section-specific Q&A
# --------------------------------------------------------------------------------------
PDF_CACHE_PATH = os.path.join(tempfile.gettempdir(), "irs_pub1075.pdf")
INDEX_JSON_PATH = os.path.join(tempfile.gettempdir(), "irs_pub1075_index.json")
PAGE_TEXTS: List[str] = []
PAGE_HEADINGS: List[str] = []
PAGE_VECTORIZER: Optional[TfidfVectorizer] = None
PAGE_TFIDF = None
PDF_AVAILABLE: bool = False
PDF_PAGES: int = 0
def _first_nonempty_line(text: str) -> str:
for line in (text or "").splitlines():
ln = line.strip()
if ln:
return ln[:120]
return "Untitled section"
def _split_sentences(text: str) -> List[str]:
# Simple sentence splitter
parts = re.split(r'(?<=[\.\?!])\s+(?=[A-Z0-9])', text.strip())
# Filter and trim
return [p.strip() for p in parts if p.strip()]
def _download_pdf_if_needed() -> bool:
# Return True if available (downloaded or already cached)
try:
if os.path.exists(PDF_CACHE_PATH) and os.path.getsize(PDF_CACHE_PATH) > 0:
return True
resp = requests.get(IRS_PUB_1075_URL, timeout=30)
resp.raise_for_status()
with open(PDF_CACHE_PATH, "wb") as f:
f.write(resp.content)
return True
except Exception:
return False
def _build_page_index() -> bool:
global PAGE_TEXTS, PAGE_HEADINGS, PAGE_VECTORIZER, PAGE_TFIDF, PDF_PAGES
try:
with open(PDF_CACHE_PATH, "rb") as f:
reader = PdfReader(f)
PAGE_TEXTS = []
PAGE_HEADINGS = []
PDF_PAGES = len(reader.pages)
for i in range(PDF_PAGES):
try:
txt = reader.pages[i].extract_text() or ""
except Exception:
txt = ""
PAGE_TEXTS.append(txt)
PAGE_HEADINGS.append(_first_nonempty_line(txt))
# Build TF-IDF over pages (page-level retrieval)
PAGE_VECTORIZER = TfidfVectorizer(stop_words="english")
PAGE_TFIDF = PAGE_VECTORIZER.fit_transform(PAGE_TEXTS)
# Save a tiny index manifest (optional)
with open(INDEX_JSON_PATH, "w") as jf:
json.dump({"pages": PDF_PAGES, "cached_at": time.time()}, jf)
return True
except Exception:
PAGE_TEXTS, PAGE_HEADINGS, PAGE_VECTORIZER, PAGE_TFIDF = [], [], None, None
return False
def ensure_pdf_index_ready() -> bool:
global PDF_AVAILABLE
if PAGE_TFIDF is not None and PAGE_VECTORIZER is not None and PAGE_TEXTS:
PDF_AVAILABLE = True
return True
if not _download_pdf_if_needed():
PDF_AVAILABLE = False
return False
ok = _build_page_index()
PDF_AVAILABLE = ok
return ok
def search_pub1075_pages(query: str, top_k: int = 5) -> List[Dict[str, Any]]:
"""
Returns a list of dicts: {page, heading, score, snippets: [ ... ] }
Each 'snippets' item is a short sentence-level excerpt from that page.
"""
if not ensure_pdf_index_ready():
return []
q_vec = PAGE_VECTORIZER.transform([query])
sims = cosine_similarity(q_vec, PAGE_TFIDF).flatten()
order = sims.argsort()[::-1][:max(1, top_k)]
results = []
for idx in order:
page_text = PAGE_TEXTS[idx]
heading = PAGE_HEADINGS[idx]
sentences = _split_sentences(page_text)
# Score sentences by simple TF-IDF dot with the same vectorizer (fallback: substring hit count)
try:
sent_vecs = PAGE_VECTORIZER.transform(sentences)
s_sims = cosine_similarity(q_vec, sent_vecs).flatten()
top_sent_idx = s_sims.argsort()[::-1][:3]
best_snips = [sentences[i] for i in top_sent_idx if sentences[i]]
except Exception:
# Fallback: choose sentences containing query terms
q_terms = [t for t in re.findall(r"\w+", query.lower()) if len(t) > 2]
scored = []
for s in sentences:
score = sum(1 for t in q_terms if t in s.lower())
scored.append((score, s))
scored.sort(key=lambda x: (-x[0], -len(x[1])))
best_snips = [s for sc, s in scored[:3] if s]
# Trim snippets (keep them short)
trimmed = []
for sn in best_snips:
trimmed.append(sn[:400])
results.append({
"page": idx + 1, # 1-based for human readability
"heading": heading,
"score": float(sims[idx]),
"snippets": trimmed
})
return results
def detailed_answer_from_pages(query: str, top_k: int = 5) -> str:
hits = search_pub1075_pages(query, top_k=top_k)
if not hits:
return (
"The app could not access the official PDF at runtime, so detailed citations are unavailable. "
"Please enable internet access for this Space or try again later. "
f"Source of truth: {IRS_PUB_1075_URL}"
)
out = []
out.append("### Detailed Guidance (grounded in IRS Publication 1075)")
# Provide an actionable, structured answer first
out.append("**Actionable steps:**")
out.append("- Identify whether the control applies to systems or processes handling Federal Tax Information (FTI).")
out.append("- Document policy requirements, technical configurations, and operational procedures.")
out.append("- Implement control mechanisms and verify via monitoring, audits, or tests.")
out.append("- Maintain evidence (policies, tickets, logs, reports) to demonstrate compliance during reviews.")
out.append("")
# Then include the most relevant sections with snippets and exact page numbers
out.append("**Most relevant sections in Pub. 1075 (by page):**")
for i, h in enumerate(hits, 1):
out.append(f"**{i}. Page {h['page']} — {h['heading']}**")
for sn in h["snippets"]:
out.append(f"> {sn}")
out.append(f"_Citation: IRS Publication 1075 (official PDF), page {h['page']}. {IRS_PUB_1075_URL}_")
out.append("")
# Add a compact reading plan
pages_list = ", ".join(str(h["page"]) for h in hits[:5])
out.append(f"**Suggested reading order:** pages {pages_list} in the official PDF above.")
return "\n".join(out)
# --------------------------------------------------------------------------------------
# Document parsing utils (for uploaded documents)
# --------------------------------------------------------------------------------------
def read_pdf_bytes(file_bytes: bytes) -> str:
reader = PdfReader(io.BytesIO(file_bytes))
texts = []
for page in reader.pages:
try:
texts.append(page.extract_text() or "")
except Exception:
pass
return "\n".join(texts)
def read_docx_bytes(file_bytes: bytes) -> str:
f = io.BytesIO(file_bytes)
doc = DocxDocument(f)
return "\n".join([p.text for p in doc.paragraphs])
def extract_text_from_upload(upload_bytes: Optional[bytes]) -> Tuple[str, str]:
if upload_bytes is None:
return "", "No file."
raw = upload_bytes
# Try PDF
try:
txt = read_pdf_bytes(raw)
if txt.strip():
return txt, f"PDF file | {len(raw)} bytes | parsed length: {len(txt)} chars"
except Exception:
pass
# Try DOCX
try:
txt = read_docx_bytes(raw)
if txt.strip():
return txt, f"DOCX file | {len(raw)} bytes | parsed length: {len(txt)} chars"
except Exception:
pass
# Fallback: text
try:
txt = raw.decode("utf-8", errors="ignore")
return txt, f"Plain text | {len(raw)} bytes | parsed length: {len(txt)} chars"
except Exception as e:
return "", f"Error reading file: {e}"
def run_checks(doc_text: str) -> List[Dict[str, Any]]:
results = []
text = doc_text.lower()
for chk in CHECKS:
found = any(re.search(p, text, flags=re.IGNORECASE) for p in chk["patterns_any"])
status = "Meets (evidence found)" if found else "Gap (no explicit evidence)"
results.append({
"title": chk["title"],
"section": chk["section"],
"status": status,
"recommendation": chk["recommendation"]
})
return results
def summarize_score(findings: List[Dict[str, Any]]) -> Dict[str, Any]:
total = len(findings)
met = sum(1 for f in findings if f["status"].startswith("Meets"))
gaps = total - met
score_pct = int(round((met / total) * 100)) if total else 0
return {"total": total, "met": met, "gaps": gaps, "score": score_pct}
def format_report(meta: str, findings: List[Dict[str, Any]]) -> str:
summary = summarize_score(findings)
lines = [
"# Pub. 1075 Heuristic Compliance Assessment",
f"- Source of truth: {IRS_PUB_1075_URL}",
f"- Document: {meta}",
f"- Summary Score: {summary['score']}% (Met {summary['met']} of {summary['total']}; Gaps {summary['gaps']})",
"",
"## Findings (by theme)"
]
for f in findings:
lines.append(f"### {f['title']}")
lines.append(f"- Theme: {f['section']}")
lines.append(f"- Status: {f['status']}")
lines.append(f"- Recommendation: {f['recommendation']}")
lines.append("")
lines += [
"---",
"### Notes",
"- This assessment is heuristic. Controls may be present but phrased differently.",
"- Validate against the official IRS Publication 1075 and your agency policy."
]
return "\n".join(lines)
# --------------------------------------------------------------------------------------
# Gradio handlers
# --------------------------------------------------------------------------------------
def handle_assessment(upload_bytes: bytes):
text, meta = extract_text_from_upload(upload_bytes)
if not text.strip():
return WARNING_BANNER, "No text extracted. Please upload a PDF or DOCX with selectable text.", "", gr.update(visible=False)
findings = run_checks(text)
report_md = format_report(meta, findings)
report_name = f"pub1075_assessment_{datetime.utcnow().strftime('%Y%m%dT%H%M%SZ')}.md"
report_path = os.path.join("/tmp", report_name)
with open(report_path, "wb") as f:
f.write(report_md.encode("utf-8"))
table_lines = ["| Control | Status | Theme |", "|---|---|---|"]
for fnd in findings:
table_lines.append(f"| {fnd['title']} | {fnd['status']} | {fnd['section']} |")
table_md = "\n".join(table_lines)
header_md = (
f"> {WARNING_BANNER}\n\n"
f"**Parsed Document Info:** {meta}\n\n"
f"**Summary Score:** {summarize_score(findings)['score']}%\n\n"
f"**Authoritative Source:** {IRS_PUB_1075_URL}"
)
return header_md, table_md, report_md, report_path
def handle_qa(question: str):
# Provide a detailed, section-specific answer with page citations
question = (question or "").strip()
if not question:
return "Please enter a question about IRS Publication 1075."
return detailed_answer_from_pages(question, top_k=5)
# --------------------------------------------------------------------------------------
# UI
# --------------------------------------------------------------------------------------
with gr.Blocks(title=APP_TITLE, theme=gr.themes.Default()) as demo:
gr.Markdown(f"# {APP_TITLE}\n{APP_TAGLINE}\n\n{WARNING_BANNER}")
with gr.Tab("Upload & Check (Heuristic)"):
gr.Markdown(
"Upload a **PDF** or **DOCX** policy/security document. The assistant will run Pub. 1075-aligned heuristic checks and provide a structured report (downloadable as Markdown)."
)
file_in = gr.File(label="Upload PDF or DOCX", file_types=[".pdf", ".docx"], type="binary")
run_btn = gr.Button("Run Compliance Assessment")
header_out = gr.Markdown()
table_out = gr.Markdown()
report_out = gr.Markdown(label="Full Report (Markdown)")
download_out = gr.File(label="Download Report (.md)", visible=False)
run_btn.click(
fn=handle_assessment,
inputs=[file_in],
outputs=[header_out, table_out, report_out, download_out]
)
with gr.Tab("Interactive Q&A (Detailed with Page Citations)"):
gr.Markdown(
"Ask about Pub. 1075 requirements. The app downloads and searches the **official PDF**, returning detailed guidance "
"and citing **specific pages** and short snippets.\n\n"
f"Source of truth: {IRS_PUB_1075_URL}"
)
question_in = gr.Textbox(label="Your question", placeholder="e.g., What encryption protections are required for FTI during transmission?")
ask_btn = gr.Button("Get Answer")
answer_out = gr.Markdown()
ask_btn.click(fn=handle_qa, inputs=[question_in], outputs=[answer_out])
with gr.Tab("About & Scope"):
gr.Markdown(
f"""
### Source of Truth
- Only the official IRS Publication 1075 PDF is used: {IRS_PUB_1075_URL}
### How Q&A Works
- The app downloads the PDF (if internet is available), builds a page-level TF-IDF index, and retrieves the most relevant pages.
- It surfaces short, relevant passages and cites **exact page numbers** for deeper reading.
### Security Notes
- Files are processed in memory; the downloadable report is written to **/tmp** solely for user download.
- Do not upload real Federal Tax Information (FTI).
### Limitations
- Heuristic checks may miss controls that are phrased differently.
- This tool does not replace formal IRS compliance review or legal advice.
"""
)
if __name__ == "__main__":
# Do not force share=True on Spaces
demo.launch()
|