Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,964 Bytes
77c5fd0 8eb2595 77c5fd0 8eb2595 77c5fd0 8eb2595 77c5fd0 8eb2595 77c5fd0 0eba8b1 8e31ec4 0eba8b1 77c5fd0 0eba8b1 77c5fd0 bfc9f2a 77c5fd0 bfc9f2a 77c5fd0 8e31ec4 77c5fd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import gradio as gr
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer
from decord import VideoReader, cpu
from scipy.spatial import cKDTree
import numpy as np
import math
import time
import spaces
# Model initialization
model = None
tokenizer = None
MAX_NUM_FRAMES = 180
MAX_NUM_PACKING = 3
TIME_SCALE = 0.1
def load_model():
global model, tokenizer
if model is None:
gr.Info("Loading model... This may take a moment.")
model = AutoModel.from_pretrained(
'openbmb/MiniCPM-V-4_5',
trust_remote_code=True,
attn_implementation='sdpa',
torch_dtype=torch.bfloat16
)
model = model.eval()
tokenizer = AutoTokenizer.from_pretrained(
'openbmb/MiniCPM-V-4_5',
trust_remote_code=True
)
gr.Success("Model loaded successfully!")
return model, tokenizer
def map_to_nearest_scale(values, scale):
tree = cKDTree(np.asarray(scale)[:, None])
_, indices = tree.query(np.asarray(values)[:, None])
return np.asarray(scale)[indices]
def group_array(arr, size):
return [arr[i:i+size] for i in range(0, len(arr), size)]
def encode_video(video_path, choose_fps=3, force_packing=None):
def uniform_sample(l, n):
gap = len(l) / n
idxs = [int(i * gap + gap / 2) for i in range(n)]
return [l[i] for i in idxs]
vr = VideoReader(video_path, ctx=cpu(0))
fps = vr.get_avg_fps()
video_duration = len(vr) / fps
if choose_fps * int(video_duration) <= MAX_NUM_FRAMES:
packing_nums = 1
choose_frames = round(min(choose_fps, round(fps)) * min(MAX_NUM_FRAMES, video_duration))
else:
packing_nums = math.ceil(video_duration * choose_fps / MAX_NUM_FRAMES)
if packing_nums <= MAX_NUM_PACKING:
choose_frames = round(video_duration * choose_fps)
else:
choose_frames = round(MAX_NUM_FRAMES * MAX_NUM_PACKING)
packing_nums = MAX_NUM_PACKING
frame_idx = [i for i in range(0, len(vr))]
frame_idx = np.array(uniform_sample(frame_idx, choose_frames))
if force_packing:
packing_nums = min(force_packing, MAX_NUM_PACKING)
frames = vr.get_batch(frame_idx).asnumpy()
frame_idx_ts = frame_idx / fps
scale = np.arange(0, video_duration, TIME_SCALE)
frame_ts_id = map_to_nearest_scale(frame_idx_ts, scale) / TIME_SCALE
frame_ts_id = frame_ts_id.astype(np.int32)
assert len(frames) == len(frame_ts_id)
frames = [Image.fromarray(v.astype('uint8')).convert('RGB') for v in frames]
frame_ts_id_group = group_array(frame_ts_id, packing_nums)
return frames, frame_ts_id_group, video_duration, len(frame_idx), packing_nums
@spaces.GPU(duration=60)
def process_video_and_question(video, question, fps, force_packing, history):
if video is None:
gr.Warning("Please upload a video first.")
return history, ""
if not question:
gr.Warning("Please enter a question.")
return history, ""
try:
# Load model if not already loaded
model, tokenizer = load_model()
model = model.cuda()
# Encode video
gr.Info(f"Processing video with {fps} FPS...")
frames, frame_ts_id_group, duration, num_frames, packing_nums = encode_video(
video,
fps,
force_packing=force_packing if force_packing > 0 else None
)
# Prepare messages
msgs = [
{'role': 'user', 'content': frames + [question]},
]
# Get model response
gr.Info("Generating response...")
answer = model.chat(
msgs=msgs,
tokenizer=tokenizer,
use_image_id=False,
max_slice_nums=1,
temporal_ids=frame_ts_id_group
)
# Update chat history
history.append({
"role": "user",
"content": f"📹 [Video: {duration:.1f}s, {num_frames} frames, packing: {packing_nums}]\n{question}"
})
history.append({
"role": "assistant",
"content": answer
})
return history, ""
except Exception as e:
gr.Error(f"Error processing video: {str(e)}")
return history, ""
def clear_chat():
return [], None, "", 3, 0
# Create Gradio interface with theme
theme = gr.themes.Soft(
primary_hue=gr.themes.colors.blue,
secondary_hue=gr.themes.colors.gray,
neutral_hue=gr.themes.colors.gray,
spacing_size="md",
radius_size="md",
text_size="md",
font=[gr.themes.GoogleFont("Inter"), "SF Pro Display", "-apple-system", "BlinkMacSystemFont", "sans-serif"],
font_mono=[gr.themes.GoogleFont("SF Mono"), "Monaco", "Menlo", "monospace"]
).set(
body_background_fill="*neutral_50",
body_background_fill_dark="*neutral_950",
button_primary_background_fill="*primary_500",
button_primary_background_fill_hover="*primary_600",
button_primary_text_color="white",
button_primary_border_color="*primary_500",
block_background_fill="white",
block_background_fill_dark="*neutral_900",
block_border_width="1px",
block_border_color="*neutral_200",
block_border_color_dark="*neutral_800",
block_radius="*radius_lg",
block_shadow="0px 1px 3px 0px rgba(0, 0, 0, 0.02), 0px 0px 0px 1px rgba(0, 0, 0, 0.05)",
block_shadow_dark="0px 1px 3px 0px rgba(0, 0, 0, 0.1), 0px 0px 0px 1px rgba(255, 255, 255, 0.05)",
input_background_fill="*neutral_50",
input_background_fill_dark="*neutral_900",
input_border_color="*neutral_300",
input_border_color_dark="*neutral_700",
input_border_width="1px",
input_radius="*radius_md",
slider_color="*primary_500",
)
with gr.Blocks(theme=theme, title="Video Chat with MiniCPM-V") as demo:
gr.Markdown(
"""
# 🎥 Video Chat with MiniCPM-V-4.5
Upload a video and ask questions about it! The model uses advanced 3D-resampler compression
to process multiple frames efficiently.
**Note:** First run will download the model (~8GB), which may take a few minutes.
"""
)
with gr.Row():
# Main video area (takes most of the space)
with gr.Column(scale=3):
video_input = gr.Video(
label="Upload Video",
height=600
)
# Sidebar with all controls
with gr.Column(scale=1):
chatbot = gr.Chatbot(
label="Chat",
height=300,
type="messages"
)
with gr.Row():
question_input = gr.Textbox(
label="Ask about the video",
placeholder="e.g., Describe what happens in this video...",
lines=2,
scale=4
)
submit_btn = gr.Button("Send", variant="primary", scale=1)
with gr.Row():
clear_btn = gr.Button("Clear Chat", variant="secondary", size="sm")
example_btn1 = gr.Button("Describe", size="sm")
example_btn2 = gr.Button("Action", size="sm")
example_btn3 = gr.Button("People", size="sm")
with gr.Accordion("Advanced Settings", open=False):
fps_slider = gr.Slider(
minimum=1,
maximum=10,
value=3,
step=1,
label="FPS for frame extraction",
info="Higher FPS captures more detail but uses more memory"
)
force_packing_slider = gr.Slider(
minimum=0,
maximum=MAX_NUM_PACKING,
value=0,
step=1,
label="Force Packing",
info=f"0 = auto, 1-{MAX_NUM_PACKING} = force specific packing number"
)
with gr.Accordion("ℹ️ Video Info", open=False):
gr.Markdown(
"""
- **Max frames:** 180 × 3 packing = 540 frames
- **Temporal compression:** 64 tokens per video
- **Supported formats:** MP4, AVI, MOV, etc.
"""
)
# Example questions
example_btn1.click(
lambda: "Describe this video in detail.",
outputs=question_input
)
example_btn2.click(
lambda: "What actions or events occur in this video?",
outputs=question_input
)
example_btn3.click(
lambda: "Are there any people in this video? If so, what are they doing?",
outputs=question_input
)
# Event handlers
submit_btn.click(
fn=process_video_and_question,
inputs=[video_input, question_input, fps_slider, force_packing_slider, chatbot],
outputs=[chatbot, question_input]
)
question_input.submit(
fn=process_video_and_question,
inputs=[video_input, question_input, fps_slider, force_packing_slider, chatbot],
outputs=[chatbot, question_input]
)
clear_btn.click(
fn=clear_chat,
outputs=[chatbot, video_input, question_input, fps_slider, force_packing_slider]
)
# Examples
gr.Examples(
examples=[
["Describe what happens in this video"],
["What is the main subject of this video?"],
["Count the number of objects or people in the video"],
["What emotions or mood does this video convey?"],
["Summarize the key moments in this video"],
],
inputs=question_input,
label="Example Questions"
)
if __name__ == "__main__":
demo.launch() |