Spaces:
Running
Running
File size: 9,275 Bytes
b87c1b6 d872fa5 bc2cb72 275a10f b78c4e1 10616f8 b87c1b6 d872fa5 b87c1b6 29ea35b 6b2dd9c 29ea35b d872fa5 275a10f b87c1b6 275a10f b87c1b6 275a10f 5f47e36 e34f60e 275a10f b87c1b6 275a10f d872fa5 24c348f b87c1b6 d872fa5 b87c1b6 275a10f d872fa5 b87c1b6 29ea35b 24c348f e34f60e b87c1b6 e34f60e b87c1b6 e34f60e b87c1b6 e34f60e b87c1b6 e34f60e b87c1b6 e34f60e b87c1b6 5f47e36 b87c1b6 5f47e36 b87c1b6 e34f60e b87c1b6 e34f60e d872fa5 e34f60e b87c1b6 d872fa5 e34f60e d872fa5 10616f8 8d392f5 10616f8 b78c4e1 10616f8 b87c1b6 8d392f5 10616f8 8d392f5 10616f8 8d392f5 10616f8 8d392f5 6b2dd9c b78c4e1 b87c1b6 8d392f5 6b2dd9c b78c4e1 8d392f5 b78c4e1 8d392f5 10616f8 fea8f7a 6b2dd9c b87c1b6 10616f8 6b2dd9c b87c1b6 10616f8 b87c1b6 10616f8 ec68f4a 2a343c0 10616f8 ec68f4a 10616f8 8d392f5 10616f8 2a343c0 10616f8 ec68f4a 10616f8 b87c1b6 6b2dd9c d872fa5 275a10f b87c1b6 6b2dd9c 2a343c0 57451e8 2a343c0 10616f8 2a343c0 10616f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import gradio as gr
import os
import tempfile
import shutil
from typing import Optional, Tuple, Union
from huggingface_hub import InferenceClient
from pathlib import Path
# Initialize Hugging Face Inference Client with fal-ai provider
client = InferenceClient(
provider="fal-ai",
api_key=os.environ.get("HF_TOKEN"),
bill_to="huggingface",
)
def cleanup_temp_files():
"""Clean up old temporary video files to prevent storage overflow."""
try:
temp_dir = tempfile.gettempdir()
# Clean up old .mp4 files in temp directory
for file_path in Path(temp_dir).glob("*.mp4"):
try:
# Remove files older than 5 minutes
import time
if file_path.stat().st_mtime < (time.time() - 300):
file_path.unlink(missing_ok=True)
except Exception:
pass
except Exception as e:
print(f"Cleanup error: {e}")
def generate_video(
prompt: str,
duration: int = 8,
size: str = "1280x720",
api_key: Optional[str] = None
) -> Tuple[Optional[str], str]:
"""Generate video using Sora-2 through Hugging Face Inference API with fal-ai provider."""
cleanup_temp_files()
try:
if api_key:
temp_client = InferenceClient(
provider="fal-ai",
api_key=api_key,
bill_to="huggingface",
)
else:
temp_client = client
if not os.environ.get("HF_TOKEN") and not api_key:
return None, "β Please set HF_TOKEN environment variable."
video_bytes = temp_client.text_to_video(
prompt,
model="akhaliq/sora-2",
)
temp_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
try:
temp_file.write(video_bytes)
temp_file.flush()
video_path = temp_file.name
finally:
temp_file.close()
return video_path, "β
Video generated successfully!"
except Exception as e:
return None, f"β Error generating video: {str(e)}"
def generate_video_from_image(
image: Union[str, bytes],
prompt: str,
api_key: Optional[str] = None
) -> Tuple[Optional[str], str]:
"""Generate a video from a single input image + prompt using Sora-2 image-to-video."""
cleanup_temp_files()
if not prompt or prompt.strip() == "":
return None, "β Please enter a prompt"
try:
if api_key:
temp_client = InferenceClient(
provider="fal-ai",
api_key=api_key,
bill_to="huggingface",
)
else:
temp_client = client
if not os.environ.get("HF_TOKEN") and not api_key:
return None, "β Please set HF_TOKEN environment variable."
if isinstance(image, str):
with open(image, "rb") as f:
input_image = f.read()
elif isinstance(image, (bytes, bytearray)):
input_image = image
else:
return None, "β Invalid image input. Please upload an image."
video_bytes = temp_client.image_to_video(
input_image,
prompt=prompt,
model="akhaliq/sora-2-image-to-video",
)
temp_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
try:
temp_file.write(video_bytes)
temp_file.flush()
video_path = temp_file.name
finally:
temp_file.close()
return video_path, "β
Video generated from image successfully!"
except Exception as e:
return None, f"β Error generating video from image: {str(e)}"
def generate_with_auth(
prompt: str,
profile: gr.OAuthProfile | None
) -> Tuple[Optional[str], str]:
"""Wrapper function that checks if user is logged in before generating video."""
if profile is None:
raise gr.Error("Click Sign in with Hugging Face button to use this app for free")
if not prompt or prompt.strip() == "":
return None, "β Please enter a prompt"
return generate_video(
prompt,
duration=8,
size="1280x720",
api_key=None
)
def generate_with_auth_image(
prompt: str,
image_path: Optional[str],
profile: gr.OAuthProfile | None
) -> Tuple[Optional[str], str]:
"""Checks login status then calls image->video generator."""
if profile is None:
raise gr.Error("Click Sign in with Hugging Face button to use this app for free")
if not image_path:
return None, "β Please upload an image"
return generate_video_from_image(image=image_path, prompt=prompt, api_key=None)
def create_ui():
css = '''
.logo-dark{display: none}
.dark .logo-dark{display: block !important}
.dark .logo-light{display: none}
#sub_title{margin-top: -20px !important}
'''
with gr.Blocks(title="Sora-2 Text-to-Video Generator", theme=gr.themes.Soft(), css=css) as demo:
gr.HTML("""
<div style="text-align: center; max-width: 800px; margin: 0 auto;">
<h1 style="font-size: 2.5em; margin-bottom: 0.5em;">
π¬ Sora-2 Text-to-Video Generator
</h1>
<p style="font-size: 1.1em; color: #666; margin-bottom: 20px;">Generate stunning videos using OpenAI's Sora-2 model</p>
<p style='color: orange;'>β οΈ You must Sign in with Hugging Face using the button to use this app.</p>
<p style="font-size: 0.9em; color: #999; margin-top: 15px;">
Built with <a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank" style="color: #667eea;">anycoder</a>
</p>
</div>
""")
# Add login button - required for OAuth
gr.LoginButton()
# Text -> Video
with gr.Row():
with gr.Column(scale=1):
prompt_input = gr.Textbox(
label="Enter your prompt",
placeholder="Describe the video you want to create...",
lines=4
)
generate_btn = gr.Button("π₯ Generate Video", variant="primary", size="lg")
with gr.Column(scale=1):
video_output = gr.Video(label="Generated Video", height=400, interactive=False, show_download_button=True)
status_output = gr.Textbox(label="Status", interactive=False, visible=True)
generate_btn.click(
fn=generate_with_auth,
inputs=[prompt_input],
outputs=[video_output, status_output],
# Queue will be automatically enabled with OAuth
)
# Image -> Video UI
gr.HTML("""
<div style="text-align: center; margin: 40px 0 10px;">
<h3 style="margin-bottom: 8px;">πΌοΈ β π¬ Image β Video (beta)</h3>
<p style="color:#666; margin:0;">Turn a single image into a short video with a guiding prompt.</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
img_prompt_input = gr.Textbox(
label="Describe how the scene should evolve",
placeholder="e.g., The cat starts to dance and spins playfully",
lines=3,
)
image_input = gr.Image(label="Upload an image", type="filepath")
generate_img_btn = gr.Button("π₯ Generate from Image", variant="primary")
with gr.Column(scale=1):
video_output_img = gr.Video(label="Generated Video (from Image)", height=400, interactive=False, show_download_button=True)
status_output_img = gr.Textbox(label="Status", interactive=False, visible=True)
generate_img_btn.click(
fn=generate_with_auth_image,
inputs=[img_prompt_input, image_input],
outputs=[video_output_img, status_output_img],
)
# Example usage guidance
gr.Examples(
examples=[
["A majestic golden eagle soaring through a vibrant sunset sky"],
],
inputs=prompt_input,
outputs=video_output,
fn=generate_video, # Examples use the original function
cache_examples=False,
api_name=False,
show_api=False,
)
return demo
if __name__ == "__main__":
try:
cleanup_temp_files()
if os.path.exists("gradio_cached_examples"):
shutil.rmtree("gradio_cached_examples", ignore_errors=True)
except Exception as e:
print(f"Initial cleanup error: {e}")
app = create_ui()
# Configure queue with optimized settings for OAuth-enabled app
app.queue(
status_update_rate="auto",
api_open=False, # Disable public API access for security
default_concurrency_limit=50 # Allow multiple concurrent requests
)
app.launch(
show_api=False,
enable_monitoring=False,
quiet=True,
max_threads=40, # Increase thread pool for better performance
) |