Spaces:
Sleeping
Sleeping
# Copyright 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# | |
# Redistribution and use in source and binary forms, with or without | |
# modification, are permitted provided that the following conditions | |
# are met: | |
# * Redistributions of source code must retain the above copyright | |
# notice, this list of conditions and the following disclaimer. | |
# * Redistributions in binary form must reproduce the above copyright | |
# notice, this list of conditions and the following disclaimer in the | |
# documentation and/or other materials provided with the distribution. | |
# * Neither the name of NVIDIA CORPORATION nor the names of its | |
# contributors may be used to endorse or promote products derived | |
# from this software without specific prior written permission. | |
# | |
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY | |
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | |
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR | |
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | |
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | |
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | |
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | |
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
import requests | |
import soundfile as sf | |
import json | |
import numpy as np | |
import argparse | |
def get_args(): | |
parser = argparse.ArgumentParser( | |
formatter_class=argparse.ArgumentDefaultsHelpFormatter | |
) | |
parser.add_argument( | |
"--server-url", | |
type=str, | |
default="localhost:8000", | |
help="Address of the server", | |
) | |
parser.add_argument( | |
"--reference-audio", | |
type=str, | |
default="../../example/prompt_audio.wav", | |
help="Path to a single audio file. It can't be specified at the same time with --manifest-dir", | |
) | |
parser.add_argument( | |
"--reference-text", | |
type=str, | |
default="吃燕窝就选燕之屋,本节目由26年专注高品质燕窝的燕之屋冠名播出。豆奶牛奶换着喝,营养更均衡,本节目由豆本豆豆奶特约播出。", | |
help="", | |
) | |
parser.add_argument( | |
"--target-text", | |
type=str, | |
default="身临其境,换新体验。塑造开源语音合成新范式,让智能语音更自然。", | |
help="", | |
) | |
parser.add_argument( | |
"--model-name", | |
type=str, | |
default="spark_tts", | |
choices=[ | |
"f5_tts", "spark_tts" | |
], | |
help="triton model_repo module name to request: transducer for k2, attention_rescoring for wenet offline, streaming_wenet for wenet streaming, infer_pipeline for paraformer large offline", | |
) | |
parser.add_argument( | |
"--output-audio", | |
type=str, | |
default="output.wav", | |
help="Path to save the output audio", | |
) | |
return parser.parse_args() | |
def prepare_request( | |
waveform, | |
reference_text, | |
target_text, | |
sample_rate=16000, | |
padding_duration: int = None, | |
audio_save_dir: str = "./", | |
): | |
assert len(waveform.shape) == 1, "waveform should be 1D" | |
lengths = np.array([[len(waveform)]], dtype=np.int32) | |
if padding_duration: | |
# padding to nearset 10 seconds | |
samples = np.zeros( | |
( | |
1, | |
padding_duration | |
* sample_rate | |
* ((int(duration) // padding_duration) + 1), | |
), | |
dtype=np.float32, | |
) | |
samples[0, : len(waveform)] = waveform | |
else: | |
samples = waveform | |
samples = samples.reshape(1, -1).astype(np.float32) | |
data = { | |
"inputs":[ | |
{ | |
"name": "reference_wav", | |
"shape": samples.shape, | |
"datatype": "FP32", | |
"data": samples.tolist() | |
}, | |
{ | |
"name": "reference_wav_len", | |
"shape": lengths.shape, | |
"datatype": "INT32", | |
"data": lengths.tolist(), | |
}, | |
{ | |
"name": "reference_text", | |
"shape": [1, 1], | |
"datatype": "BYTES", | |
"data": [reference_text] | |
}, | |
{ | |
"name": "target_text", | |
"shape": [1, 1], | |
"datatype": "BYTES", | |
"data": [target_text] | |
} | |
] | |
} | |
return data | |
if __name__ == "__main__": | |
args = get_args() | |
server_url = args.server_url | |
if not server_url.startswith(("http://", "https://")): | |
server_url = f"http://{server_url}" | |
url = f"{server_url}/v2/models/{args.model_name}/infer" | |
waveform, sr = sf.read(args.reference_audio) | |
assert sr == 16000, "sample rate hardcoded in server" | |
samples = np.array(waveform, dtype=np.float32) | |
data = prepare_request(samples, args.reference_text, args.target_text) | |
rsp = requests.post( | |
url, | |
headers={"Content-Type": "application/json"}, | |
json=data, | |
verify=False, | |
params={"request_id": '0'} | |
) | |
result = rsp.json() | |
audio = result["outputs"][0]["data"] | |
audio = np.array(audio, dtype=np.float32) | |
sf.write(args.output_audio, audio, 16000, "PCM_16") |