Spaces:
Sleeping
Sleeping
from flask import Flask, request, jsonify | |
from dotenv import load_dotenv | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.embeddings import OpenAIEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.chat_models import ChatOpenAI | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
import os | |
app = Flask(__name__) | |
load_dotenv() | |
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY') | |
def get_pdf_text(pdf_docs): | |
text = "" | |
for pdf in pdf_docs: | |
pdf_reader = PdfReader(pdf) | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
return text | |
def get_text_chunks(text): | |
text_splitter = CharacterTextSplitter( | |
separator="\n", | |
chunk_size=1000, | |
chunk_overlap=200, | |
length_function=len | |
) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
def get_vectorstore(text_chunks): | |
embeddings = OpenAIEmbeddings() | |
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
return vectorstore | |
def get_conversation_chain(vectorstore): | |
llm = ChatOpenAI() | |
memory = ConversationBufferMemory( | |
memory_key='chat_history', return_messages=True) | |
conversation_chain = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
retriever=vectorstore.as_retriever(), | |
memory=memory | |
) | |
return conversation_chain | |
def upload_files(): | |
if 'files' not in request.files: | |
return jsonify({"error": "No file part in the request"}), 400 | |
files = request.files.getlist('files') | |
raw_text = get_pdf_text(files) | |
text_chunks = get_text_chunks(raw_text) | |
vectorstore = get_vectorstore(text_chunks) | |
global conversation_chain | |
conversation_chain = get_conversation_chain(vectorstore) | |
return jsonify({"status": "Files processed successfully"}), 200 | |
def query(): | |
if 'question' not in request.json: | |
return jsonify({"error": "No question provided"}), 400 | |
question = request.json['question'] | |
if 'conversation_chain' not in globals(): | |
return jsonify({"error": "No conversation chain initialized. Please upload documents first."}), 400 | |
response = conversation_chain({'question': question}) | |
return jsonify({"response": response['answer']}) | |