from flask import Flask, request, jsonify from dotenv import load_dotenv from PyPDF2 import PdfReader from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import FAISS from langchain.chat_models import ChatOpenAI from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain import os app = Flask(__name__) load_dotenv() OPENAI_API_KEY = os.getenv('OPENAI_API_KEY') def get_pdf_text(pdf_docs): text = "" for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text += page.extract_text() return text def get_text_chunks(text): text_splitter = CharacterTextSplitter( separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text) return chunks def get_vectorstore(text_chunks): embeddings = OpenAIEmbeddings() vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) return vectorstore def get_conversation_chain(vectorstore): llm = ChatOpenAI() memory = ConversationBufferMemory( memory_key='chat_history', return_messages=True) conversation_chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=vectorstore.as_retriever(), memory=memory ) return conversation_chain @app.route('/upload', methods=['POST']) def upload_files(): if 'files' not in request.files: return jsonify({"error": "No file part in the request"}), 400 files = request.files.getlist('files') raw_text = get_pdf_text(files) text_chunks = get_text_chunks(raw_text) vectorstore = get_vectorstore(text_chunks) global conversation_chain conversation_chain = get_conversation_chain(vectorstore) return jsonify({"status": "Files processed successfully"}), 200 @app.route('/query', methods=['POST']) def query(): if 'question' not in request.json: return jsonify({"error": "No question provided"}), 400 question = request.json['question'] if 'conversation_chain' not in globals(): return jsonify({"error": "No conversation chain initialized. Please upload documents first."}), 400 response = conversation_chain({'question': question}) return jsonify({"response": response['answer']})