File size: 19,987 Bytes
228e8c1
 
 
 
 
edd2900
97bb8f1
 
83b359b
228e8c1
97bb8f1
 
 
83b359b
228e8c1
81d025b
97bb8f1
 
 
edd2900
97bb8f1
 
 
 
edd2900
97bb8f1
 
 
 
81d025b
 
97bb8f1
 
 
228e8c1
83b359b
91afacd
 
83b359b
 
91afacd
 
83b359b
 
91afacd
 
83b359b
 
91afacd
 
83b359b
 
 
f28502f
 
cc2019d
 
83b359b
 
 
 
228e8c1
 
97bb8f1
 
 
 
83b359b
228e8c1
 
 
 
 
 
 
 
 
 
 
 
 
97bb8f1
 
 
228e8c1
 
83b359b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba9dade
83b359b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91afacd
ba9dade
 
83b359b
 
 
ba9dade
83b359b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91afacd
ba9dade
 
83b359b
 
 
ba9dade
83b359b
 
 
91afacd
83b359b
 
97bb8f1
 
 
83b359b
97bb8f1
 
 
 
 
 
 
 
 
 
 
83b359b
97bb8f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
228e8c1
97bb8f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
228e8c1
 
97bb8f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83b359b
97bb8f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83b359b
97bb8f1
 
 
228e8c1
97bb8f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
228e8c1
97bb8f1
 
 
 
 
 
228e8c1
97bb8f1
 
 
 
 
 
 
 
 
 
228e8c1
97bb8f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83b359b
97bb8f1
 
 
 
 
228e8c1
97bb8f1
 
 
 
228e8c1
 
97bb8f1
 
 
 
 
228e8c1
 
97bb8f1
 
 
 
 
228e8c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97bb8f1
228e8c1
 
 
 
83b359b
6e0ff3e
 
 
228e8c1
d5e9410
228e8c1
83b359b
228e8c1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import spaces
import gradio as gr
import os
import sys
import subprocess
import numpy as np
from paligemma2 import PaliGemma2Handler, MODELS as PALIGEMMA_MODELS
from gemma import GemmaHandler, MODELS as GEMMA_MODELS
from gemma_multiline import GemmaMultilineHandler, MODELS as GEMMA_MULTILINE_MODELS

# Initialize model handlers
paligemma_handler = PaliGemma2Handler()
gemma_handler = GemmaHandler()
gemma_multiline_handler = GemmaMultilineHandler()

@spaces.GPU
def process_image_paligemma(model_name, image, progress=gr.Progress()):
    """Process a single image with PaliGemma2"""
    return paligemma_handler.process_image(model_name, image, progress)

@spaces.GPU
def process_image_gemma(model_name, image, progress=gr.Progress()):
    """Process a single image with Gemma"""
    return gemma_handler.process_image(model_name, image, progress)

@spaces.GPU
def process_pdf_paligemma(pdf_path, model_name, progress=gr.Progress()):
    """Process a PDF file with PaliGemma2"""
    return paligemma_handler.process_pdf(pdf_path, model_name, progress)

@spaces.GPU
def process_pdf_gemma(pdf_path, model_name, progress=gr.Progress()):
    """Process a PDF file with Gemma"""
    return gemma_handler.process_pdf(pdf_path, model_name, progress)

@spaces.GPU
def process_image_multiline(model_name, image, temp, top_p, repetition_penalty, progress=gr.Progress()):
    return gemma_multiline_handler.generate_text_from_image(model_name, image, temp, top_p, repetition_penalty, progress)

@spaces.GPU
def process_image_multiline_stream(model_name, image, temp, top_p, repetition_penalty, progress=gr.Progress()):
    yield from gemma_multiline_handler.generate_text_stream(model_name, image, temp, top_p, repetition_penalty, progress)

@spaces.GPU
def process_pdf_multiline(model_name, pdf, temp, top_p, repetition_penalty, progress=gr.Progress()):
    return gemma_multiline_handler.process_pdf(model_name, pdf, temp, top_p, repetition_penalty, progress)

@spaces.GPU
def process_pdf_multiline_stream(model_name, pdf, temp, top_p, repetition_penalty, progress=gr.Progress()):
    yield from gemma_multiline_handler.process_pdf_stream(model_name, pdf, temp, top_p, repetition_penalty, progress)

# Example images for document-level OCR
document_examples = [
    ["ml.png", "Multi-line Dhivehi text sample"],
    ["ml1.png", "Multi-line Dhivehi text sample 2"],
    ["ml2.png", "Multi-line Dhivehi text sample 3"],
    ["ml3.png", "Multi-line Dhivehi text sample 4"],
]

# Example images for sentence-level OCR
sentence_examples = [
    ["type_1_sl.png", "Typed Dhivehi text sample 1"],
    ["type_2_sl.png", "Typed Dhivehi text sample 2"],
    ["hw_1_sl.png", "Handwritten Dhivehi text sample 1"],
    ["hw_2_sl.jpg", "Handwritten Dhivehi text sample 2"],
    ["hw_3_sl.png", "Handwritten Dhivehi text sample 3"],
    ["hw_4_sl.png", "Handwritten Dhivehi text sample 4"],
    ["ml.png", "Multi-line Dhivehi text sample"],
]

css = """
.textbox1 textarea {
    font-size: 18px !important;
    font-family: 'MV_Faseyha', 'Faruma', 'A_Faruma' !important;
    line-height: 1.8 !important;
}
.textbox2 textarea {
    display: none;
}
"""

with gr.Blocks(title="Dhivehi Image to Text",css=css) as demo:
    gr.Markdown("# Dhivehi Image to Text")
    gr.Markdown("Dhivehi Image to Text experimental finetunes")
    
    with gr.Tabs():
        with gr.Tab("Gemma Document"):
            with gr.Row():
                model_path_dropdown = gr.Dropdown(
                    label="Model Checkpoint",
                    choices=list(GEMMA_MULTILINE_MODELS.keys()),
                    value=list(GEMMA_MULTILINE_MODELS.keys())[0],
                    interactive=True,
                    scale=2
                )
            
            with gr.Accordion("Advanced Options", open=False):
                with gr.Row():
                    temperature_slider = gr.Slider(
                        minimum=0.1, maximum=1.9, value=0.2, step=0.1,
                        label="Temperature", info="Controls randomness in generation"
                    )
                    top_p_slider = gr.Slider(
                        minimum=0.1, maximum=1.0, value=1, step=0.1,
                        label="Top-p", info="Controls diversity via nucleus sampling"
                    )
                    repetition_penalty_slider = gr.Slider(
                        minimum=1.0, maximum=2.0, value=1.2, step=0.1,
                        label="Repetition Penalty", info="Penalizes repeated tokens. >1 encourages new tokens."
                    )

            with gr.Tabs():
                with gr.Tab("Image Input"):
                    with gr.Row():
                        with gr.Column():
                            image_input = gr.Image(type="pil", label="Upload Image")
                            with gr.Row():
                                generate_button = gr.Button("Generate Text (Non-streaming)")
                                stream_button = gr.Button("Generate Text (Streaming)", variant="primary")
                                stop_button = gr.Button("Stop", visible=False, variant="stop")
                            gr.Examples(
                                examples=[[img] for img, _ in document_examples],
                                inputs=[image_input],
                                outputs=None,
                                label="Example Images",
                                examples_per_page=7
                            )
                        with gr.Column():
                            text_output = gr.Textbox(
                                label="Extracted Dhivehi Text",
                                lines=20,
                                rtl=True,
                                elem_classes=["textbox1"],
                                show_copy_button=True,
                                scale=2
                            )
                
                    def show_stop_button_image():
                        return gr.update(visible=True), gr.update(interactive=False), gr.update(interactive=False)

                    def hide_stop_button_image():
                        return gr.update(visible=False), gr.update(interactive=True), gr.update(interactive=True)

                    generate_button.click(
                        fn=process_image_multiline,
                        inputs=[model_path_dropdown, image_input, temperature_slider, top_p_slider, repetition_penalty_slider],
                        outputs=text_output,
                        show_progress="full"
                    )

                    show_event = stream_button.click(fn=show_stop_button_image, outputs=[stop_button, stream_button, generate_button])
                    gen_event = show_event.then(fn=process_image_multiline_stream, inputs=[model_path_dropdown, image_input, temperature_slider, top_p_slider, repetition_penalty_slider], outputs=text_output, show_progress="full")
                    gen_event.then(fn=hide_stop_button_image, outputs=[stop_button, stream_button, generate_button])
                    stop_button.click(fn=hide_stop_button_image, outputs=[stop_button, stream_button, generate_button], cancels=[gen_event])

                with gr.Tab("PDF Input"):
                    with gr.Row():
                        with gr.Column():
                            pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"])
                            with gr.Row():
                                pdf_generate_button = gr.Button("Generate Text (Non-streaming)")
                                pdf_stream_button = gr.Button("Generate Text (Streaming)", variant="primary")
                                pdf_stop_button = gr.Button("Stop", visible=False, variant="stop")
                            gr.Examples(
                                examples=[["example.pdf", "Example PDF"]],
                                inputs=[pdf_input],
                                outputs=None,
                                label="Example PDFs",
                                examples_per_page=7
                            )
                        with gr.Column():
                            pdf_text_output = gr.Textbox(
                                label="Extracted Dhivehi Text",
                                lines=20,
                                rtl=True,
                                elem_classes=["textbox1"],
                                show_copy_button=True,
                                scale=2
                            )
                
                    def show_stop_button_pdf():
                        return gr.update(visible=True), gr.update(interactive=False), gr.update(interactive=False)

                    def hide_stop_button_pdf():
                        return gr.update(visible=False), gr.update(interactive=True), gr.update(interactive=True)

                    pdf_generate_button.click(
                        fn=process_pdf_multiline,
                        inputs=[model_path_dropdown, pdf_input, temperature_slider, top_p_slider, repetition_penalty_slider],
                        outputs=pdf_text_output,
                        show_progress="full"
                    )

                    pdf_show_event = pdf_stream_button.click(fn=show_stop_button_pdf, outputs=[pdf_stop_button, pdf_stream_button, pdf_generate_button])
                    pdf_gen_event = pdf_show_event.then(fn=process_pdf_multiline_stream, inputs=[model_path_dropdown, pdf_input, temperature_slider, top_p_slider, repetition_penalty_slider], outputs=pdf_text_output, show_progress="full")
                    pdf_gen_event.then(fn=hide_stop_button_pdf, outputs=[pdf_stop_button, pdf_stream_button, pdf_generate_button])
                    pdf_stop_button.click(fn=hide_stop_button_pdf, outputs=[pdf_stop_button, pdf_stream_button, pdf_generate_button], cancels=[pdf_gen_event])

            # model_path_dropdown.change(fn=load_model_multiline, inputs=model_path_dropdown)

        with gr.Tab("PaliGemma"):
            model_dropdown_paligemma = gr.Dropdown(
                choices=list(PALIGEMMA_MODELS.keys()),
                value=list(PALIGEMMA_MODELS.keys())[0],
                label="Select PaliGemma Model"
            )
            
            with gr.Tabs():
                with gr.Tab("Image Input"):
                    with gr.Row():
                        with gr.Column(scale=2):
                            image_input_paligemma = gr.Image(type="pil", label="Input Image")
                            image_submit_btn_paligemma = gr.Button("Extract Text")
                            
                            # Image examples
                            gr.Examples(
                                examples=[[img] for img, _ in sentence_examples],
                                inputs=[image_input_paligemma],
                                label="Example Images",
                                examples_per_page=8
                            )
                        
                        with gr.Column(scale=3):
                            with gr.Tabs():
                                with gr.Tab("Extracted Text"):
                                    image_text_output_paligemma = gr.Textbox(
                                        lines=5,
                                        label="Extracted Text", 
                                        show_copy_button=True,
                                        rtl=True,
                                        elem_classes="textbox1"
                                    )
                                
                                with gr.Tab("Detected Text Regions"):
                                    image_bbox_output_paligemma = gr.Gallery(
                                        label="Detected Text Regions",
                                        show_label=True,
                                        columns=2
                                    )
                
                with gr.Tab("PDF Input"):
                    with gr.Row():
                        with gr.Column(scale=2):
                            pdf_input_paligemma = gr.File(
                                label="Input PDF",
                                file_types=[".pdf"]
                            )
                            pdf_submit_btn_paligemma = gr.Button("Extract Text from PDF")
                            
                            # PDF examples
                            gr.Examples(
                                examples=[
                                    ["example.pdf", "Example 1"],
                                ],
                                inputs=[pdf_input_paligemma],
                                label="Example PDFs",
                                examples_per_page=8
                            )
                        
                        with gr.Column(scale=3):
                            with gr.Tabs():
                                with gr.Tab("Extracted Text"):
                                    pdf_text_output_paligemma = gr.Textbox(
                                        lines=5,
                                        label="Extracted Text", 
                                        show_copy_button=True,
                                        rtl=True,
                                        elem_classes="textbox1"
                                    )
                                
                                with gr.Tab("Detected Text Regions"):
                                    pdf_bbox_output_paligemma = gr.Gallery(
                                        label="Detected Text Regions",
                                        show_label=True,
                                        columns=2
                                    )

        with gr.Tab("Gemma Sentence"):
            model_dropdown_gemma = gr.Dropdown(
                choices=list(GEMMA_MODELS.keys()),
                value=list(GEMMA_MODELS.keys())[0],
                label="Select Gemma Model"
            )
            
            with gr.Tabs():
                with gr.Tab("Image Input"):
                    with gr.Row():
                        with gr.Column(scale=2):
                            image_input_gemma = gr.Image(type="pil", label="Input Image")
                            image_submit_btn_gemma = gr.Button("Extract Text")
                            
                            # Image examples
                            gr.Examples(
                                examples=[[img] for img, _ in sentence_examples],
                                inputs=[image_input_gemma],
                                label="Example Images",
                                examples_per_page=8
                            )
                        
                        with gr.Column(scale=3):
                            with gr.Tabs():
                                with gr.Tab("Extracted Text"):
                                    image_text_output_gemma = gr.Textbox(
                                        lines=5,
                                        label="Extracted Text", 
                                        show_copy_button=True,
                                        rtl=True,
                                        elem_classes="textbox1"
                                    )
                                
                                with gr.Tab("Detected Text Regions"):
                                    image_bbox_output_gemma = gr.Gallery(
                                        label="Detected Text Regions",
                                        show_label=True,
                                        columns=2
                                    )
                
                with gr.Tab("PDF Input"):
                    with gr.Row():
                        with gr.Column(scale=2):
                            pdf_input_gemma = gr.File(
                                label="Input PDF",
                                file_types=[".pdf"]
                            )
                            pdf_submit_btn_gemma = gr.Button("Extract Text from PDF")
                            
                            # PDF examples
                            gr.Examples(
                                examples=[
                                    ["example.pdf", "Example 1"],
                                ],
                                inputs=[pdf_input_gemma],
                                label="Example PDFs",
                                examples_per_page=8
                            )
                        
                        with gr.Column(scale=3):
                            with gr.Tabs():
                                with gr.Tab("Extracted Text"):
                                    pdf_text_output_gemma = gr.Textbox(
                                        lines=5,
                                        label="Extracted Text", 
                                        show_copy_button=True,
                                        rtl=True,
                                        elem_classes="textbox1"
                                    )
                                
                                with gr.Tab("Detected Text Regions"):
                                    pdf_bbox_output_gemma = gr.Gallery(
                                        label="Detected Text Regions",
                                        show_label=True,
                                        columns=2
                                    )
    
    # PaliGemma event handlers
    image_submit_btn_paligemma.click(
        fn=process_image_paligemma,
        inputs=[model_dropdown_paligemma, image_input_paligemma],
        outputs=[image_text_output_paligemma, image_bbox_output_paligemma]
    )
    
    pdf_submit_btn_paligemma.click(
        fn=process_pdf_paligemma,
        inputs=[pdf_input_paligemma, model_dropdown_paligemma],
        outputs=[pdf_text_output_paligemma, pdf_bbox_output_paligemma]
    )
    
    # Gemma event handlers
    image_submit_btn_gemma.click(
        fn=process_image_gemma,
        inputs=[model_dropdown_gemma, image_input_gemma],
        outputs=[image_text_output_gemma, image_bbox_output_gemma]
    )
    
    pdf_submit_btn_gemma.click(
        fn=process_pdf_gemma,
        inputs=[pdf_input_gemma, model_dropdown_gemma],
        outputs=[pdf_text_output_gemma, pdf_bbox_output_gemma]
    )

# Function to install requirements
def install_requirements():
    requirements_path = 'requirements.txt'
    
    # Check if requirements.txt exists
    if not os.path.exists(requirements_path):
        print("Error: requirements.txt not found")
        return False
        
    try:
        print("Installing requirements...")
        # Using --no-cache-dir to avoid memory issues
        subprocess.check_call([
            sys.executable, 
            "-m", 
            "pip", 
            "install", 
            "-r", 
            requirements_path,
            "--no-cache-dir"
        ])
        print("Successfully installed all requirements")
        return True
    except subprocess.CalledProcessError as e:
        print(f"Error installing requirements: {e}")
        return False
    except Exception as e:
        print(f"Unexpected error: {e}")
        return False

# Launch the app
if __name__ == "__main__":
    # First install requirements
    success = install_requirements()
    if success:
        print("All requirements installed successfully")

        # Pre-load the multiline gemma model
        #print("Loading default Gemma Multiline model...")
        #gemma_multiline_handler.load_model(list(GEMMA_MULTILINE_MODELS.keys())[0])
        #print("Default model loaded.")
        
        demo.launch()
    else:
        print("Failed to install some requirements")
        print("Failed to install some requirements")