Spaces:
Running
Running
| #import spaces | |
| import gradio as gr | |
| from transformers import pipeline, GPT2TokenizerFast | |
| model_id = "alakxender/dv-wiki-gpt2" | |
| #model_id = "alakxender/dv-articles-gpt2" | |
| tokenizer = GPT2TokenizerFast.from_pretrained(model_id, model_max_length=128) | |
| generator = pipeline("text-generation", model=model_id, tokenizer=tokenizer, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id) | |
| #@spaces.GPU(duration=60) | |
| def generate_text(prompt, max_length, temperature): | |
| try: | |
| generated = generator( | |
| prompt, | |
| max_length=max_length, | |
| #num_beams=10, | |
| #no_repeat_ngram_size=2, | |
| temperature=temperature, | |
| do_sample=True, | |
| repetition_penalty=1.4 | |
| ) | |
| return generated[0]['generated_text'] | |
| except Exception as e: | |
| return f"Something went wrong, try again. Error: {str(e)}" | |
| styles = """ | |
| .thaana textarea { | |
| font-size: 18px !important; | |
| font-family: 'MV_Faseyha', 'Faruma', 'A_Faruma', 'Noto Sans Thaana', 'MV Boli'; | |
| line-height: 1.8 !important; | |
| } | |
| """ | |
| def create_interface(): | |
| with gr.Blocks(css=styles) as demo: | |
| gr.Markdown("# Dhivehi Text Generator (GPT-2, Wiki)") | |
| gr.Markdown( | |
| "This is a GPT-2 model trained from Dhivehi text data from wikipedia\n" | |
| "Enter some text and generate a new text, adjust the parameters to generate text." | |
| ) | |
| gr.Markdown(""" | |
| **Parameters:** | |
| - **Temperature**: Controls the creativity of the output. | |
| - Lower values (0.2) = More focused and predictable text | |
| - Higher values (0.8) = More diverse and creative text | |
| - **Maximum Length**: Controls the length of generated text. | |
| - Higher values generate longer, more detailed results | |
| - Note: Longer texts take more time to generate | |
| """) | |
| with gr.Row(): | |
| input_temperature = gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.7, | |
| step=0.1, | |
| label="Temperature", | |
| ) | |
| input_max_length = gr.Slider( | |
| minimum=10, | |
| maximum=128, | |
| value=60, | |
| step=1, | |
| label="Maximum Length", | |
| ) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| input_prompt = gr.Textbox( | |
| label="Enter dhivehi text prompt", | |
| placeholder="ދިވެހިން", | |
| lines=5, | |
| rtl=True, | |
| elem_classes="thaana" | |
| ) | |
| with gr.Column(scale=1): | |
| output_text = gr.Textbox( | |
| label="Generated Text", | |
| lines=5, | |
| interactive=True, | |
| rtl=True, | |
| elem_classes="thaana" | |
| ) | |
| with gr.Row(): | |
| generate_btn = gr.Button("Generate", variant="primary") | |
| clear_btn = gr.ClearButton([input_prompt, output_text]) | |
| generate_btn.click( | |
| fn=generate_text, | |
| inputs=[input_prompt, input_max_length, input_temperature], | |
| outputs=output_text | |
| ) | |
| gr.Examples( | |
| examples=[ | |
| ["ދިވެހިރާއްޖެ"], | |
| ["އެމެރިކާ އިންތިޚާބު"], | |
| ["ސަލާމް"], | |
| ["ދުނިޔޭގެ ސިއްޙަތު ޖަމްޢިއްޔާ"], | |
| ["ޤަދީމީ ސަގާފަތް"], | |
| ["ޑިމޮކްރަސީ"] | |
| ], | |
| inputs=input_prompt | |
| ) | |
| return demo | |
| if __name__ == "__main__": | |
| demo = create_interface() | |
| demo.queue().launch(show_api=False) |