RUGAI / app.py
alanbarret's picture
Update app.py
8413514 verified
import gradio as gr
from ultralytics import YOLO
import cv2
import numpy as np
from PIL import Image
from sklearn.cluster import DBSCAN
# Load the YOLO model
model = YOLO('models/rugai_m_v2.pt')
def remove_overlapping_boxes(boxes, iou_threshold=0.3):
"""Remove overlapping boxes using IoU threshold."""
if not boxes:
return []
# Convert boxes to numpy array
boxes = np.array(boxes)
# Calculate areas
areas = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
# Sort by area (largest first)
indices = np.argsort(areas)[::-1]
keep = []
while indices.size > 0:
i = indices[0]
keep.append(i)
# Calculate IoU with remaining boxes
xx1 = np.maximum(boxes[i, 0], boxes[indices[1:], 0])
yy1 = np.maximum(boxes[i, 1], boxes[indices[1:], 1])
xx2 = np.minimum(boxes[i, 2], boxes[indices[1:], 2])
yy2 = np.minimum(boxes[i, 3], boxes[indices[1:], 3])
w = np.maximum(0, xx2 - xx1)
h = np.maximum(0, yy2 - yy1)
overlap = (w * h) / areas[indices[1:]]
# Keep boxes with IoU less than threshold
indices = indices[1:][overlap < iou_threshold]
return keep
def process_image(image, show_boxes=True):
# Convert PIL Image to numpy array if needed
if isinstance(image, Image.Image):
image = np.array(image)
# Run inference with specific parameters
results = model.predict(image, imgsz=320, conf=0.4, iou=0.9)[0]
# Lists to store center points of knots
centers_x = []
centers_y = []
# Process each result and extract boxes
boxes = [] # Store all boxes and their centers
height, width = image.shape[:2]
for box in results.boxes:
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()
x1, y1, x2, y2 = map(int, [x1, y1, x2, y2])
# Calculate box center
center_x = (x1 + x2) // 2
center_y = (y1 + y2) // 2
boxes.append({
'coords': (x1, y1, x2, y2),
'center': (center_x, center_y)
})
centers_x.append(center_x)
centers_y.append(center_y)
# Remove overlapping boxes
if boxes:
box_coords = [box['coords'] for box in boxes]
keep_indices = remove_overlapping_boxes(box_coords, iou_threshold=0.3)
boxes = [boxes[i] for i in keep_indices]
centers_x = [centers_x[i] for i in keep_indices]
centers_y = [centers_y[i] for i in keep_indices]
# Sort centers
centers_y.sort()
centers_x.sort()
# Set tolerances based on average knot size
if len(boxes) > 0:
avg_width = sum((b['coords'][2] - b['coords'][0]) for b in boxes) / len(boxes)
avg_height = sum((b['coords'][3] - b['coords'][1]) for b in boxes) / len(boxes)
x_tolerance = int(avg_width * 0.22)
y_tolerance = int(avg_height * 0.22)
else:
x_tolerance = y_tolerance = 5
# Find representative points for rows and columns using DBSCAN
rows = []
cols = []
# Cluster y-coordinates into rows
if centers_y:
y_centers = np.array(centers_y).reshape(-1, 1)
y_clustering = DBSCAN(eps=y_tolerance, min_samples=2, metric='euclidean').fit(y_centers)
unique_labels = np.unique(y_clustering.labels_)
for label in unique_labels:
if label != -1: # Skip noise points
cluster_points = y_centers[y_clustering.labels_ == label]
rows.append(int(np.mean(cluster_points)))
# Cluster x-coordinates into columns
if centers_x:
x_centers = np.array(centers_x).reshape(-1, 1)
x_clustering = DBSCAN(eps=x_tolerance, min_samples=2, metric='euclidean').fit(x_centers)
unique_labels = np.unique(x_clustering.labels_)
for label in unique_labels:
if label != -1: # Skip noise points
cluster_points = x_centers[x_clustering.labels_ == label]
cols.append(int(np.mean(cluster_points)))
# Sort rows and columns
rows.sort()
cols.sort()
# Calculate total knots
total_knots = len(rows) * len(cols)
# Add padding for measurements
padding = 100
padded_img = np.full((height + 2*padding, width + 2*padding, 3), 255, dtype=np.uint8)
padded_img[padding:padding+height, padding:padding+width] = image
# Draw boxes if requested
if show_boxes:
for box in boxes:
x1, y1, x2, y2 = box['coords']
cv2.rectangle(padded_img,
(x1 + padding, y1 + padding),
(x2 + padding, y2 + padding),
(0, 255, 0), 2)
# Draw measurement lines and labels
cv2.line(padded_img, (padding, padding//2), (width+padding, padding//2), (0, 0, 0), 2)
cv2.putText(padded_img, f"{len(cols)} knots",
(padding + width//2 - 100, padding//2 - 10),
cv2.FONT_HERSHEY_DUPLEX, 0.7, (0, 0, 0), 2)
cv2.line(padded_img, (width+padding+padding//2, padding), (width+padding+padding//2, height+padding), (0, 0, 0), 2)
cv2.putText(padded_img, f"{len(rows)} knots",
(width+padding+padding//2 + 10, padding + height//2),
cv2.FONT_HERSHEY_DUPLEX, 0.7, (0, 0, 0), 2)
# Add total knot count and density
cv2.putText(padded_img, f"{int(total_knots)} Total Knots",
(padding + width//2 - 100, height + padding + padding//2),
cv2.FONT_HERSHEY_DUPLEX, 0.7, (0, 0, 0), 2)
cv2.putText(padded_img, f"{int(total_knots)} knots/sqcm",
(padding + width//2 - 100, height + padding + padding//2 + 30),
cv2.FONT_HERSHEY_DUPLEX, 0.7, (0, 0, 0), 2)
# Prepare detection information
detection_info = f"Total Knots: {int(total_knots)}\n"
detection_info += f"Rows: {len(rows)}\n"
detection_info += f"Columns: {len(cols)}\n"
detection_info += f"Density: {int(total_knots)} knots/sqcm"
return padded_img, detection_info
# Create Gradio interface
with gr.Blocks(title="Rug Knot Detector") as demo:
gr.Markdown("# 🧶 Rug Knot Detector")
gr.Markdown("Upload an image of a rug to detect and analyze knots using our custom YOLO model.")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Upload Rug Image")
show_boxes = gr.Checkbox(label="Show Detection Boxes", value=True)
detect_btn = gr.Button("Detect Knots")
with gr.Column():
output_image = gr.Image(label="Detection Results")
output_text = gr.Textbox(label="Detection Information", lines=5)
detect_btn.click(
fn=process_image,
inputs=[input_image, show_boxes],
outputs=[output_image, output_text]
)
if __name__ == "__main__":
demo.launch(share=True)