Spaces:
Running
on
Zero
Running
on
Zero
File size: 27,731 Bytes
7f7e7f5 450faf2 7f7e7f5 450faf2 7f7e7f5 860ccb9 27af94d 7f7e7f5 860ccb9 7f7e7f5 860ccb9 7405917 7f7e7f5 7405917 860ccb9 7f7e7f5 450faf2 860ccb9 8c79bd9 860ccb9 450faf2 7405917 860ccb9 7405917 860ccb9 7f7e7f5 860ccb9 7f7e7f5 860ccb9 7f7e7f5 860ccb9 7f7e7f5 860ccb9 7f7e7f5 860ccb9 7f7e7f5 860ccb9 7f7e7f5 860ccb9 8c79bd9 860ccb9 7f7e7f5 8c79bd9 860ccb9 7f7e7f5 450faf2 860ccb9 7405917 7f7e7f5 860ccb9 7f7e7f5 7405917 7f7e7f5 7405917 860ccb9 7405917 860ccb9 7405917 7f7e7f5 450faf2 860ccb9 7f7e7f5 860ccb9 7f7e7f5 860ccb9 7f7e7f5 450faf2 860ccb9 7405917 7f7e7f5 860ccb9 7f7e7f5 860ccb9 8c79bd9 860ccb9 7f7e7f5 860ccb9 7f7e7f5 860ccb9 7405917 860ccb9 7f7e7f5 860ccb9 7f7e7f5 d01e6ca 7f7e7f5 860ccb9 7f7e7f5 860ccb9 7f7e7f5 860ccb9 7f7e7f5 7405917 7f7e7f5 7405917 7f7e7f5 860ccb9 7405917 7f7e7f5 860ccb9 7f7e7f5 860ccb9 7f7e7f5 d01e6ca 7f7e7f5 860ccb9 7f7e7f5 5ea61f7 860ccb9 5ea61f7 860ccb9 d01e6ca 7f7e7f5 860ccb9 7f7e7f5 860ccb9 7f7e7f5 860ccb9 7f7e7f5 860ccb9 7f7e7f5 860ccb9 7f7e7f5 d01e6ca 860ccb9 7f7e7f5 860ccb9 561fbe0 b57bd69 d01e6ca 7f7e7f5 860ccb9 7f7e7f5 d01e6ca 7f7e7f5 d01e6ca 7f7e7f5 b57bd69 7f7e7f5 860ccb9 561fbe0 d01e6ca 7f7e7f5 860ccb9 7f7e7f5 d01e6ca 860ccb9 7f7e7f5 d01e6ca 5ea61f7 d01e6ca 5ea61f7 d01e6ca 7f7e7f5 860ccb9 7f7e7f5 860ccb9 d01e6ca 7f7e7f5 860ccb9 7f7e7f5 860ccb9 d01e6ca 5ea61f7 7f7e7f5 860ccb9 561fbe0 860ccb9 d01e6ca 860ccb9 d01e6ca 7f7e7f5 7405917 561fbe0 d01e6ca 7405917 7f7e7f5 860ccb9 7f7e7f5 860ccb9 7f7e7f5 860ccb9 7f7e7f5 860ccb9 d01e6ca 860ccb9 d01e6ca 860ccb9 d01e6ca 488897e 7f7e7f5 450faf2 7f7e7f5 7405917 7f7e7f5 860ccb9 7405917 7f7e7f5 860ccb9 7f7e7f5 ae51bd1 7f7e7f5 860ccb9 992b763 860ccb9 7f7e7f5 860ccb9 7f7e7f5 860ccb9 7f7e7f5 860ccb9 7f7e7f5 860ccb9 7f7e7f5 860ccb9 7f7e7f5 860ccb9 7f7e7f5 860ccb9 7f7e7f5 860ccb9 7405917 860ccb9 7405917 860ccb9 d01e6ca 860ccb9 d01e6ca 7405917 860ccb9 d01e6ca 7f7e7f5 860ccb9 7405917 860ccb9 7f7e7f5 860ccb9 7405917 860ccb9 7f7e7f5 860ccb9 7f7e7f5 d01e6ca 7405917 d01e6ca 7405917 d01e6ca 7f7e7f5 450faf2 7f7e7f5 450faf2 d01e6ca 860ccb9 7f7e7f5 860ccb9 7f7e7f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 |
# ===== 必须首先导入spaces =====
try:
import spaces
SPACES_AVAILABLE = True
print("✅ Spaces available - ZeroGPU mode")
except ImportError:
SPACES_AVAILABLE = False
print("⚠️ Spaces not available - running in regular mode")
# ===== 其他导入 =====
import os
import uuid
from datetime import datetime
import random
import torch
import gradio as gr
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler
from PIL import Image
import traceback
import numpy as np
import io
import base64
# ===== 长提示词处理 =====
try:
from compel import Compel, ReturnedEmbeddingsType
COMPEL_AVAILABLE = True
print("✅ Compel available for long prompt processing")
except ImportError:
COMPEL_AVAILABLE = False
print("⚠️ Compel not available - using standard prompt processing")
# ===== 修复后的配置 =====
STYLE_PRESETS = {
"None": "",
"Realistic": "photorealistic, 8k, ultra-detailed, cinematic lighting, masterpiece, realistic skin texture, detailed anatomy, professional photography",
"Anime": "anime style, detailed, high quality, masterpiece, best quality, detailed eyes, perfect anatomy, vibrant colors, clean art style",
"Comic": "comic book style, bold outlines, vibrant colors, cel shading, dynamic pose, graphic illustration",
"Watercolor": "watercolor illustration, soft gradients, pastel palette, artistic brush strokes, delicate textures"
}
# 固定模型配置
FIXED_MODEL = "votepurchase/pornmasterPro_noobV3VAE"
# 固定LoRA配置 - 只保留Quality
QUALITY_LORA = {
"repo_id": "artificialguybr/LogoRedmond-LogoLoraForSDXL-V2",
"filename": "LogoRedAF.safetensors",
"scale": 0.8,
"description": "Quality and realism enhancer"
}
# 质量增强提示词
QUALITY_ENHANCERS = [
"detailed anatomy", "(perfect anatomy:1.2)", "soft skin", "natural lighting",
"high resolution", "(masterpiece:1.3)", "(best quality:1.2)",
"professional photography", "artistic composition",
"(perfect proportions:1.1)", "smooth textures", "intimate lighting",
"realistic skin texture", "(detailed face:1.1)", "natural pose"
]
# 修复后的风格专用增强词 - 更明显的差异
STYLE_ENHANCERS = {
"Realistic": [
"photorealistic", "(ultra realistic:1.3)", "natural lighting", "detailed skin",
"professional photography", "(hyperrealistic:1.2)", "lifelike", "raw photo",
"cinematic lighting", "depth of field"
],
"Anime": [
"anime style", "(high quality anime:1.3)", "detailed eyes", "perfect face",
"clean art style", "(anime art:1.2)", "cel animation", "vibrant anime colors",
"manga style", "Japanese animation"
],
"Comic": [
"comic book style", "(comic art:1.3)", "bold outlines", "vibrant colors",
"cel shading", "graphic illustration", "pop art", "cartoon style",
"comic book illustration", "graphic novel art"
],
"Watercolor": [
"watercolor style", "(watercolor painting:1.3)", "artistic", "soft gradients",
"pastel palette", "delicate textures", "paint bleeding", "artistic brush strokes",
"traditional art", "painted illustration"
]
}
SAVE_DIR = "generated_images"
os.makedirs(SAVE_DIR, exist_ok=True)
# ===== 模型相关变量 =====
pipeline = None
compel_processor = None
device = None
model_loaded = False
lora_loaded = False
def initialize_model():
"""优化的模型初始化函数"""
global pipeline, compel_processor, device, model_loaded, lora_loaded
if model_loaded and pipeline is not None:
return True
try:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"🖥️ Using device: {device}")
print(f"📦 Loading fixed model: {FIXED_MODEL}")
# 基础模型加载
pipeline = StableDiffusionXLPipeline.from_pretrained(
FIXED_MODEL,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
variant="fp16" if torch.cuda.is_available() else None,
use_safetensors=True,
safety_checker=None,
requires_safety_checker=False
)
# 优化调度器
pipeline.scheduler = EulerDiscreteScheduler.from_config(
pipeline.scheduler.config,
timestep_spacing="trailing"
)
pipeline = pipeline.to(device)
# 统一数据类型
if torch.cuda.is_available():
pipeline.text_encoder.to(torch.float16)
pipeline.text_encoder_2.to(torch.float16)
pipeline.vae.to(torch.float16)
pipeline.unet.to(torch.float16)
# GPU优化
if torch.cuda.is_available():
try:
pipeline.enable_vae_slicing()
pipeline.enable_attention_slicing()
try:
pipeline.enable_xformers_memory_efficient_attention()
except:
pass
except Exception as mem_error:
print(f"⚠️ Memory optimization warning: {mem_error}")
# 加载Quality LoRA
try:
print("🔧 Loading Quality LoRA...")
pipeline.load_lora_weights(
QUALITY_LORA["repo_id"],
weight_name=QUALITY_LORA["filename"],
adapter_name="quality_enhancer"
)
pipeline.set_adapters(["quality_enhancer"], adapter_weights=[QUALITY_LORA["scale"]])
lora_loaded = True
print("✅ Quality LoRA loaded successfully")
except Exception as lora_error:
print(f"⚠️ LoRA loading failed: {lora_error}")
lora_loaded = False
# 初始化Compel
if COMPEL_AVAILABLE:
try:
compel_processor = Compel(
tokenizer=[pipeline.tokenizer, pipeline.tokenizer_2],
text_encoder=[pipeline.text_encoder, pipeline.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True],
truncate_long_prompts=False
)
print("✅ Long prompt processor (Compel) initialized successfully")
except Exception as compel_error:
print(f"⚠️ Compel initialization failed: {compel_error}")
compel_processor = None
model_loaded = True
print("✅ Model initialization complete")
return True
except Exception as e:
print(f"❌ Critical model loading error: {e}")
print(traceback.format_exc())
model_loaded = False
return False
def enhance_prompt(prompt: str, style: str) -> str:
"""修复后的增强提示词函数"""
if not prompt or prompt.strip() == "":
return ""
enhanced_parts = [prompt.strip()]
# 添加风格前缀
style_prefix = STYLE_PRESETS.get(style, "")
if style_prefix and style != "None":
enhanced_parts.insert(0, style_prefix)
# 添加风格特定增强词
if style in STYLE_ENHANCERS and style != "None":
style_terms = ", ".join(STYLE_ENHANCERS[style])
enhanced_parts.append(style_terms)
# 添加质量增强词
quality_terms = ", ".join(QUALITY_ENHANCERS)
enhanced_parts.append(quality_terms)
enhanced_prompt = ", ".join(filter(None, enhanced_parts))
print(f"🎨 Style: {style}")
print(f"📝 Original prompt: {prompt[:100]}...")
print(f"✨ Enhanced prompt: {enhanced_prompt[:150]}...")
return enhanced_prompt
def process_long_prompt(prompt, negative_prompt=""):
"""处理长提示词"""
if not compel_processor:
return None, None
try:
conditioning, pooled = compel_processor([prompt, negative_prompt])
return conditioning, pooled
except Exception as e:
print(f"Long prompt processing failed: {e}")
return None, None
def apply_spaces_decorator(func):
"""应用spaces装饰器"""
if SPACES_AVAILABLE:
return spaces.GPU(duration=60)(func)
return func
def create_metadata_content(prompt, enhanced_prompt, seed, steps, cfg_scale, width, height, style):
"""创建元数据内容"""
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
return f"""Generated Image Metadata
======================
Timestamp: {timestamp}
Original Prompt: {prompt}
Enhanced Prompt: {enhanced_prompt}
Seed: {seed}
Steps: {steps}
CFG Scale: {cfg_scale}
Dimensions: {width}x{height}
Style: {style}
Model: PornMasterPro
LoRA: Quality Enhancer (scale: 0.8)
"""
def convert_to_pil_image(image_data):
"""转换图像数据为PIL Image对象"""
if image_data is None:
return None
# 如果已经是PIL Image,直接返回
if isinstance(image_data, Image.Image):
return image_data
# 如果是numpy数组,转换为PIL Image
if isinstance(image_data, np.ndarray):
# 确保数据类型正确
if image_data.dtype != np.uint8:
if image_data.max() <= 1.0:
image_data = (image_data * 255).astype(np.uint8)
else:
image_data = image_data.astype(np.uint8)
# 转换为PIL Image
if len(image_data.shape) == 3:
return Image.fromarray(image_data, 'RGB')
elif len(image_data.shape) == 2:
return Image.fromarray(image_data, 'L')
return None
@apply_spaces_decorator
def generate_image(prompt: str, style: str, negative_prompt: str = "", steps: int = 28, cfg_scale: float = 7.0,
seed: int = -1, width: int = 1024, height: int = 1024, progress=gr.Progress()):
"""图像生成函数"""
if not prompt or prompt.strip() == "":
return None, "", ""
# 初始化模型
progress(0.1, desc="Loading model...")
if not initialize_model():
return None, "", "❌ Failed to load model"
progress(0.3, desc="Processing prompt...")
try:
# 处理seed
if seed == -1:
seed = random.randint(0, np.iinfo(np.int32).max)
# 增强提示词 - 确保风格生效
enhanced_prompt = enhance_prompt(prompt.strip(), style)
# 增强负面提示词
if not negative_prompt.strip():
negative_prompt = "(low quality, worst quality:1.4), (bad anatomy, bad hands:1.2), blurry, watermark, signature, text, error, missing limbs, extra limbs, cropped, normal quality, jpeg artifacts, deformed, mutated"
# 生成参数
generator = torch.Generator(device).manual_seed(seed)
progress(0.5, desc="Generating image...")
# 长提示词处理
use_long_prompt = len(enhanced_prompt.split()) > 60 or len(enhanced_prompt) > 300
if use_long_prompt and compel_processor:
conditioning, pooled = process_long_prompt(enhanced_prompt, negative_prompt)
if conditioning is not None:
result = pipeline(
prompt_embeds=conditioning[0:1],
pooled_prompt_embeds=pooled[0:1],
negative_prompt_embeds=conditioning[1:2],
negative_pooled_prompt_embeds=pooled[1:2],
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator
)
image = result.images[0]
else:
result = pipeline(
prompt=enhanced_prompt,
negative_prompt=negative_prompt,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator
)
image = result.images[0]
else:
result = pipeline(
prompt=enhanced_prompt,
negative_prompt=negative_prompt,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator
)
image = result.images[0]
progress(0.9, desc="Processing output...")
# 确保图像是PIL Image对象
image = convert_to_pil_image(image)
if image is None:
return None, "", "❌ Failed to convert image"
# 创建元数据内容
metadata_content = create_metadata_content(
prompt, enhanced_prompt, seed, steps, cfg_scale, width, height, style
)
progress(1.0, desc="Complete!")
# 生成信息显示
generation_info = f"Style: {style} | Seed: {seed} | Size: {width}×{height} | Steps: {steps} | CFG: {cfg_scale}"
return image, generation_info, metadata_content
except Exception as e:
error_msg = str(e)
print(f"Generation error: {error_msg}")
print(traceback.format_exc())
return None, "", f"❌ Generation failed: {error_msg}"
# ===== CSS样式 - 修复版 =====
css = """
/* 全局容器 */
.gradio-container {
max-width: 100% !important;
margin: 0 !important;
padding: 0 !important;
background: linear-gradient(135deg, #e6a4f2 0%, #1197e4 100%) !important;
min-height: 100vh !important;
font-family: 'Segoe UI', Arial, sans-serif !important;
}
/* 主要内容区域 */
.main-content {
background: rgba(255, 255, 255, 0.9) !important;
border-radius: 20px !important;
padding: 20px !important;
margin: 15px !important;
box-shadow: 0 10px 25px rgba(255, 255, 255, 0.2) !important;
min-height: calc(100vh - 30px) !important;
color: #3e3e3e !important;
backdrop-filter: blur(10px) !important;
}
/* 简化标题 */
.title {
text-align: center !important;
background: linear-gradient(45deg, #bb6ded, #08676b) !important;
-webkit-background-clip: text !important;
-webkit-text-fill-color: transparent !important;
background-clip: text !important;
font-size: 2rem !important;
margin-bottom: 15px !important;
font-weight: bold !important;
}
/* 简化警告信息 */
.warning-box {
background: linear-gradient(45deg, #bb6ded, #08676b) !important;
color: white !important;
padding: 8px !important;
border-radius: 8px !important;
margin-bottom: 15px !important;
text-align: center !important;
font-weight: bold !important;
font-size: 14px !important;
}
/* 输入框样式 - 修复背景色 */
.prompt-box textarea, .prompt-box input {
border-radius: 10px !important;
border: 2px solid #bb6ded !important;
padding: 15px !important;
font-size: 18px !important;
background: linear-gradient(135deg, rgba(245, 243, 255, 0.9), rgba(237, 233, 254, 0.9)) !important;
color: #2d2d2d !important;
}
.prompt-box textarea:focus, .prompt-box input:focus {
border-color: #08676b !important;
box-shadow: 0 0 15px rgba(77, 8, 161, 0.3) !important;
background: linear-gradient(135deg, rgba(255, 255, 255, 0.95), rgba(248, 249, 250, 0.95)) !important;
}
/* 右侧控制区域 - 修复背景色 */
.controls-section {
background: linear-gradient(135deg, rgba(224, 218, 255, 0.8), rgba(196, 181, 253, 0.8)) !important;
border-radius: 12px !important;
padding: 15px !important;
margin-bottom: 8px !important;
border: 2px solid rgba(187, 109, 237, 0.3) !important;
backdrop-filter: blur(5px) !important;
}
.controls-section label {
font-weight: 600 !important;
color: #2d2d2d !important;
margin-bottom: 8px !important;
}
/* 修复单选按钮和输入框背景 */
.controls-section input[type="radio"] {
accent-color: #bb6ded !important;
}
.controls-section input[type="number"],
.controls-section input[type="range"] {
background: rgba(255, 255, 255, 0.9) !important;
border: 1px solid #bb6ded !important;
border-radius: 6px !important;
padding: 8px !important;
color: #2d2d2d !important;
}
.controls-section select {
background: rgba(255, 255, 255, 0.9) !important;
border: 1px solid #bb6ded !important;
border-radius: 6px !important;
padding: 8px !important;
color: #2d2d2d !important;
}
/* 生成按钮 */
.generate-btn {
background: linear-gradient(45deg, #bb6ded, #08676b) !important;
color: white !important;
border: none !important;
padding: 15px 25px !important;
border-radius: 25px !important;
font-size: 16px !important;
font-weight: bold !important;
width: 100% !important;
cursor: pointer !important;
transition: all 0.3s ease !important;
text-transform: uppercase !important;
letter-spacing: 1px !important;
}
.generate-btn:hover {
transform: translateY(-2px) !important;
box-shadow: 0 8px 25px rgba(187, 109, 237, 0.5) !important;
}
/* 图片输出区域 */
.image-output {
border-radius: 15px !important;
overflow: hidden !important;
max-width: 100% !important;
max-height: 70vh !important;
border: 3px solid #08676b !important;
box-shadow: 0 8px 20px rgba(0,0,0,0.15) !important;
background: linear-gradient(135deg, rgba(255, 255, 255, 0.9), rgba(248, 249, 250, 0.9)) !important;
}
/* 图片信息区域 */
.image-info {
background: linear-gradient(135deg, rgba(248, 249, 250, 0.2), rgba(233, 236, 239, 0.9)) !important;
border-radius: 8px !important;
padding: 12px !important;
margin-top: 10px !important;
font-size: 12px !important;
color: #495057 !important;
border: 2px solid rgba(187, 109, 237, 0.2) !important;
backdrop-filter: blur(5px) !important;
}
/* 元数据区域样式 */
.metadata-box {
background: linear-gradient(135deg, rgba(248, 249, 250, 0.2), rgba(233, 236, 239, 0.9)) !important;
border-radius: 8px !important;
padding: 15px !important;
margin-top: 15px !important;
font-family: 'Courier New', monospace !important;
font-size: 12px !important;
color: #495057 !important;
border: 2px solid rgba(187, 109, 237, 0.2) !important;
backdrop-filter: blur(5px) !important;
white-space: pre-wrap !important;
overflow-y: auto !important;
max-height: 300px !important;
}
/* 滑块样式 */
.slider-container input[type="range"] {
accent-color: #bb6ded !important;
}
/* 响应式设计 */
@media (max-width: 768px) {
.main-content {
margin: 10px !important;
padding: 15px !important;
}
.title {
font-size: 1.5rem !important;
}
}
/* 隐藏占位符 */
.gr-image .image-container:empty::before {
content: "Generated image will appear here" !important;
display: flex !important;
align-items: center !important;
justify-content: center !important;
height: 300px !important;
background: linear-gradient(135deg, rgba(248, 249, 250, 0.8), rgba(233, 236, 239, 0.8)) !important;
border-radius: 10px !important;
color: #6c757d !important;
font-size: 16px !important;
font-weight: 500 !important;
backdrop-filter: blur(5px) !important;
/* 强制覆盖Gradio默认样式 */
.gradio-container .gr-textbox,
.gradio-container .gr-radio-group,
.gradio-container .gr-slider,
.gradio-container .gr-number {
background: rgba(255, 255, 255, 0.95) !important;
border: 1px solid rgba(187, 109, 237, 0.5) !important;
border-radius: 8px !important;
}
.gradio-container .gr-radio-group label {
color: #2d2d2d !important;
background: transparent !important;
}
"""
# ===== 创建UI =====
def create_interface():
with gr.Blocks(css=css, title="Adult NSFW AI Image Generator") as interface:
with gr.Column(elem_classes=["main-content"]):
# 简化标题
gr.HTML('<div class="title">Adult NSFW AI Image Generator</div>')
# 简化警告信息
gr.HTML('''
<div class="warning-box">
⚠️ 18+ CONTENT WARNING ⚠️
</div>
''')
# 主要输入区域
with gr.Row():
# 左侧:提示词输入
with gr.Column(scale=2):
prompt_input = gr.Textbox(
label="Detailed Prompt",
placeholder="Enter your detailed prompt here...",
lines=15,
elem_classes=["prompt-box"]
)
negative_prompt_input = gr.Textbox(
label="Negative Prompt (Optional)",
placeholder="Things you don't want in the image...",
lines=4,
elem_classes=["prompt-box"]
)
# 右侧:控制选项
with gr.Column(scale=1):
# Style选项
with gr.Group(elem_classes=["controls-section"]):
style_input = gr.Radio(
label="Style Preset",
choices=list(STYLE_PRESETS.keys()),
value="Realistic"
)
# Seed选项
with gr.Group(elem_classes=["controls-section"]):
seed_input = gr.Number(
label="Seed (-1 for random)",
value=-1,
precision=0
)
# 宽度选择
with gr.Group(elem_classes=["controls-section"]):
width_input = gr.Slider(
label="Width",
minimum=512,
maximum=2048,
value=1024,
step=64
)
# 高度选择
with gr.Group(elem_classes=["controls-section"]):
height_input = gr.Slider(
label="Height",
minimum=512,
maximum=2048,
value=1024,
step=64
)
# 高级参数
with gr.Group(elem_classes=["controls-section"]):
steps_input = gr.Slider(
label="Steps",
minimum=10,
maximum=50,
value=28,
step=1
)
cfg_input = gr.Slider(
label="CFG Scale",
minimum=1.0,
maximum=15.0,
value=7.0,
step=0.1
)
# 生成按钮
generate_button = gr.Button(
"GENERATE",
elem_classes=["generate-btn"],
variant="primary"
)
# 图片输出区域
image_output = gr.Image(
label="Generated Image",
elem_classes=["image-output"],
show_label=False,
container=True
)
# 图片信息显示
with gr.Row():
generation_info = gr.Textbox(
label="Generation Info",
interactive=False,
elem_classes=["image-info"],
show_label=True,
visible=False
)
# 元数据显示区域 - 移除下载功能,只显示可复制的文本
with gr.Row():
metadata_display = gr.Textbox(
label="Image Metadata (Copy to save)",
interactive=True,
elem_classes=["metadata-box"],
show_label=True,
lines=15,
visible=False,
placeholder="Generated image metadata will appear here..."
)
# 生成图片的主要函数
def on_generate(prompt, style, neg_prompt, steps, cfg, seed, width, height):
image, info, metadata = generate_image(
prompt, style, neg_prompt, steps, cfg, seed, width, height
)
if image is not None:
return (
image, # 图片输出
info, # 生成信息
metadata, # 元数据
gr.update(visible=True, value=info), # 显示生成信息
gr.update(visible=True, value=metadata) # 显示元数据
)
else:
return (
None,
info,
"",
gr.update(visible=False),
gr.update(visible=False)
)
# 绑定生成事件
generate_button.click(
fn=on_generate,
inputs=[
prompt_input, style_input, negative_prompt_input,
steps_input, cfg_input, seed_input, width_input, height_input
],
outputs=[
image_output, generation_info, metadata_display,
generation_info, metadata_display
],
show_progress=True
)
# 支持Enter键触发
prompt_input.submit(
fn=on_generate,
inputs=[
prompt_input, style_input, negative_prompt_input,
steps_input, cfg_input, seed_input, width_input, height_input
],
outputs=[
image_output, generation_info, metadata_display,
generation_info, metadata_display
],
show_progress=True
)
# 启动时显示欢迎信息
interface.load(
fn=lambda: (
None, "", "",
gr.update(visible=False),
gr.update(visible=False)
),
outputs=[
image_output, generation_info, metadata_display,
generation_info, metadata_display
]
)
return interface
# ===== 启动应用 =====
if __name__ == "__main__":
print("🎨 Starting Simplified NSFW Image Generator...")
print(f"🔧 Fixed Model: {FIXED_MODEL}")
print(f"🔧 Quality LoRA: {QUALITY_LORA['description']}")
print(f"🔧 Spaces GPU: {'✅ Available' if SPACES_AVAILABLE else '❌ Not Available'}")
print(f"🔧 Compel Library: {'✅ Available' if COMPEL_AVAILABLE else '❌ Not Available'}")
print(f"🔧 CUDA: {'✅ Available' if torch.cuda.is_available() else '❌ Not Available'}")
app = create_interface()
app.queue(max_size=10, default_concurrency_limit=2)
app.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
share=False
) |