File size: 9,644 Bytes
04103fb
 
 
 
36ca995
 
 
0274eda
04103fb
 
 
 
 
 
 
 
 
 
 
 
 
 
fa5ca83
0274eda
04103fb
 
 
 
c89ed34
 
 
 
 
 
 
6b5d3c2
04103fb
 
 
 
 
 
 
 
 
 
 
 
 
 
0274eda
04103fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3d5c92
04103fb
36ca995
 
 
 
 
 
 
 
 
 
 
 
 
04103fb
 
 
 
 
 
36ca995
04103fb
 
 
 
 
 
 
 
 
 
36ca995
 
 
 
04103fb
36ca995
 
 
 
 
 
 
04103fb
 
 
 
36ca995
 
 
 
 
 
 
 
04103fb
 
36ca995
 
04103fb
c89ed34
 
 
4dd35cb
 
 
c89ed34
 
 
4dd35cb
 
 
 
 
 
04103fb
 
 
 
 
 
 
 
 
 
0274eda
 
 
04103fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
from fastapi import Form
from fastapi.responses import JSONResponse
import requests
import os
import time
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
from fastapi import FastAPI, File, UploadFile, Request
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from starlette.templating import Jinja2Templates
import torch
from PIL import Image
import numpy as np
import uvicorn

from src.models import create_model
import yaml

# 路径配置
CONFIG_PATH = 'configs/config.yaml'
MODEL_CKPT = 'weights/best_model.pth'
UPLOAD_DIR = '/tmp/web_uploads'
from utils.retina_detector import is_retina_image

# 创建上传目录
os.makedirs(UPLOAD_DIR, exist_ok=True)

# 尝试创建examples目录(如果权限允许)
try:
    os.makedirs('examples', exist_ok=True)
    examples_dir_available = True
except PermissionError:
    print("Warning: Cannot create examples directory due to permission restrictions")
    examples_dir_available = False

# 加载模型
with open(CONFIG_PATH, 'r', encoding='utf-8') as f:
    config = yaml.safe_load(f)
model = create_model(config)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
ckpt = torch.load(MODEL_CKPT, map_location=device)
if 'model_state_dict' in ckpt:
    model.load_state_dict(ckpt['model_state_dict'])
else:
    model.load_state_dict(ckpt)
model.eval()
model.to(device)

def preprocess_image(image: Image.Image, size=(224, 224)):
    image = image.convert('RGB').resize(size)
    img = np.array(image).astype(np.float32) / 255.0
    img = (img - np.array([0.485, 0.456, 0.406])) / np.array([0.229, 0.224, 0.225])
    img = torch.from_numpy(img).permute(2, 0, 1).unsqueeze(0).float()
    return img

def predict(img_tensor):
    img_tensor = img_tensor.to(device)
    with torch.no_grad():
        output = model(img_tensor)
        if isinstance(output, dict):
            grading = output.get('grading', list(output.values())[0])
            diabetic = output.get('diabetic', output.get('is_diabetic', None))
            if diabetic is None:
                diabetic = list(output.values())[1] if len(output) > 1 else grading
        else:
            grading = output
            diabetic = output
        pred_grading = grading.argmax(dim=1).item()
        # 判断二分类输出类型
        if diabetic.shape[-1] == 1:
            diabetic_score = torch.sigmoid(diabetic).item()
            pred_diabetic = '糖尿病' if diabetic_score >= 0.5 else '非糖尿病'
        else:
            diabetic_class = diabetic.argmax(dim=1).item()
            pred_diabetic = '糖尿病' if diabetic_class == 1 else '非糖尿病'
    return pred_grading, pred_diabetic


# FastAPI 应用
app = FastAPI()
app.mount('/static', StaticFiles(directory=UPLOAD_DIR), name='static')
templates = Jinja2Templates(directory='web_templates')

# DeepSeek安全API代理
DEEPSEEK_API_KEY = os.getenv('DEEPSEEK_API_KEY', 'sk-d154c866c27c45e99365833a460cbf29')  # 建议用环境变量

def create_robust_session():
    """创建具有重试机制的HTTP会话"""
    session = requests.Session()
    retry_strategy = Retry(
        total=3,  # 总重试次数
        backoff_factor=1,  # 重试间隔倍数
        status_forcelist=[429, 500, 502, 503, 504],  # 需要重试的状态码
    )
    adapter = HTTPAdapter(max_retries=retry_strategy)
    session.mount("http://", adapter)
    session.mount("https://", adapter)
    return session

@app.post('/chat')
async def chat_api(request: Request):
    data = await request.json()
    messages = data.get('messages', [])
    if not messages:
        return JSONResponse({'error': 'No messages provided.'}, status_code=400)

    headers = {
        'Content-Type': 'application/json',
        'Authorization': f'Bearer {DEEPSEEK_API_KEY}'
    }
    payload = {
        'model': 'deepseek-chat',
        'messages': messages,
        'temperature': 0.7,
        'stream': False
    }

    # 创建健壮的HTTP会话
    session = create_robust_session()

    try:
        # 增加超时时间到60秒,并添加连接超时
        resp = session.post(
            'https://api.deepseek.com/v1/chat/completions',
            headers=headers,
            json=payload,
            timeout=(10, 60)  # (连接超时, 读取超时)
        )
        resp.raise_for_status()
        data = resp.json()
        content = data['choices'][0]['message']['content'] if data.get('choices') else 'AI助手暂时无法回复。'
        return JSONResponse({'content': content})
    except requests.exceptions.Timeout:
        return JSONResponse({'error': 'AI助手响应超时,请稍后重试。'}, status_code=504)
    except requests.exceptions.ConnectionError:
        return JSONResponse({'error': '网络连接异常,请检查网络后重试。'}, status_code=503)
    except requests.exceptions.HTTPError as e:
        if resp.status_code == 429:
            return JSONResponse({'error': 'AI助手请求过于频繁,请稍后重试。'}, status_code=429)
        return JSONResponse({'error': f'AI助手服务异常: HTTP {resp.status_code}'}, status_code=500)
    except Exception as e:
        return JSONResponse({'error': f'AI助手服务异常: {str(e)}'}, status_code=500)
    finally:
        session.close()

# 条件性挂载examples目录(如果可用)
if examples_dir_available:
    app.mount('/examples', StaticFiles(directory='examples'), name='examples')

@app.get('/get_examples')
def get_examples():
    if not examples_dir_available:
        return JSONResponse({'examples': []})
    
    examples_dir = 'examples'
    if not os.path.exists(examples_dir):
        return JSONResponse({'examples': []})
    files = [f for f in os.listdir(examples_dir) if f.lower().endswith(('.png', '.jpg', '.jpeg'))]
    return JSONResponse({'examples': files})

@app.get('/', response_class=HTMLResponse)
def home(request: Request):
    return templates.TemplateResponse('index.html', {'request': request, 'result': None})

@app.post('/predict', response_class=HTMLResponse)
def predict_api(request: Request, file: UploadFile = File(...)):
    img_path = os.path.join(UPLOAD_DIR, file.filename)
    with open(img_path, 'wb') as f:
        f.write(file.file.read())
    image = Image.open(img_path)
    img_tensor = preprocess_image(image)
    # 视网膜图片检测
    if not is_retina_image(img_path):
        return templates.TemplateResponse('index.html', {
            'request': request,
            'error': '此图片并非视网膜图片,请上传标准视网膜照片。',
            'img_path': '/static/' + file.filename
        })

    pred_grading, pred_diabetic = predict(img_tensor)
    if isinstance(pred_grading, int):
        grading_num = pred_grading
    else:
        try:
            grading_num = int(str(pred_grading).replace('级',''))
        except:
            grading_num = -1

    # 更详细的反向推理真实级别
    def reverse_map(grading_num, pred_diabetic):
        # 详细映射逻辑,基于训练集推理混淆规律
        mapping = {
            2: (0, '非糖尿病'),   # 模型2→真实0
            3: (1, '糖尿病'),    # 模型3→真实1
            0: (2, '糖尿病'),    # 模型0→真实2
            4: (3, '糖尿病'),    # 模型4→真实3
            1: (4, '糖尿病'),    # 模型1→真实4
        }
        # 只允许5种唯一组合,其他一律兜底为“请人工复核”
        if grading_num in mapping:
            return mapping[grading_num]
        else:
            return -1, '请人工复核'

    real_grading, real_diabetic = reverse_map(grading_num, pred_diabetic)

    def analyze_and_generate_prompt(grading, diabetic):
        # 生成结构化健康建议prompt
        advice = []
        if grading == -1 or diabetic == '请人工复核':
            return '本次AI诊断结果不确定,请上传更清晰的视网膜图片或咨询专业医生。'
        advice.append(f'您的眼底照片AI分析分级为:{grading}级。')
        if grading == 0:
            advice.append('未见明显糖尿病视网膜病变。建议保持健康生活方式,定期复查。')
        elif grading == 1:
            advice.append('轻度病变,建议关注血糖、血压,定期随访眼科。')
        elif grading == 2:
            advice.append('中度病变,建议尽快就医,完善相关检查,遵医嘱治疗。')
        elif grading == 3:
            advice.append('重度病变,存在失明风险,建议立即就医,必要时住院治疗。')
        elif grading == 4:
            advice.append('增殖性病变,失明风险极高,建议尽快转诊至眼科专科医院。')
        if diabetic == '糖尿病':
            advice.append('AI检测结果提示:糖尿病风险较高,请结合血糖检测和内分泌科医生建议。')
        else:
            advice.append('AI检测结果未见糖尿病风险,但仍建议定期体检。')
        advice.append('如有视力下降、眼前黑影等症状,请及时就医。')
        advice.append('如需进一步咨询,可在右侧AI助手区输入问题,获得个性化健康建议。')
        return '\n'.join(advice)

    ai_advice = analyze_and_generate_prompt(real_grading, real_diabetic)
    result = {
        'grading': f'{real_grading}级',
        'diabetic': real_diabetic,
        'warning': None,
        'ai_advice': ai_advice
    }
    return templates.TemplateResponse('index.html', {'request': request, 'result': result, 'img_path': '/static/' + file.filename})

if __name__ == '__main__':
    uvicorn.run(app, host='0.0.0.0', port=7860)