File size: 11,538 Bytes
04103fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
"""
糖尿病视网膜病变检测项目
数据处理模块
"""

import os
import cv2
import numpy as np
import pandas as pd
from PIL import Image
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
import albumentations as A
from albumentations.pytorch import ToTensorV2
from typing import Tuple, List, Optional, Dict
import yaml


class DiabeticRetinopathyDataset(Dataset):
    """糖尿病视网膜病变数据集类"""
    
    def __init__(
        self,
        data_dir: str,
        csv_file: Optional[str] = None,
        transform: Optional[A.Compose] = None,
        image_size: int = 224
    ):
        """
        初始化数据集
        
        Args:
            data_dir: 图像数据目录
            csv_file: 标签CSV文件路径,如果为None则从文件名推断标签
            transform: 数据增强变换
            image_size: 图像尺寸
        """
        self.data_dir = data_dir
        self.image_size = image_size
        self.transform = transform
        
        if csv_file and os.path.exists(csv_file):
            # 从CSV文件读取标签
            self.df = pd.read_csv(csv_file)
            # 获取类别名(需与config一致)
            # 尝试自动读取class_names
            class_names = None
            config_path = os.path.join(os.path.dirname(__file__), '../..', 'configs', 'config.yaml')
            if os.path.exists(config_path):
                import yaml
                with open(config_path, 'r', encoding='utf-8') as f:
                    config = yaml.safe_load(f)
                    class_names = config['data']['class_names']
            if not class_names:
                # 兜底
                class_names = ['无病变', '轻度', '中度', '重度', '增殖性病变']

            # 兼容不同csv格式(prepare_data.py生成的为id_code/diagnosis/is_diabetic)
            if 'id_code' in self.df.columns and 'diagnosis' in self.df.columns:
                # 拼接: data_dir/类别名/图片id.png
                self.images = [os.path.join(self.data_dir, class_names[row['diagnosis']], f"{row['id_code']}.png") for _, row in self.df.iterrows()]
                self.labels = self.df['diagnosis'].tolist()
                self.is_diabetic = self.df['is_diabetic'].tolist() if 'is_diabetic' in self.df.columns else None
            elif 'image' in self.df.columns and 'label' in self.df.columns:
                # 兼容旧格式
                self.images = [os.path.join(self.data_dir, class_names[row['label']], f"{row['image']}.png") for _, row in self.df.iterrows()]
                self.labels = self.df['label'].tolist()
                self.is_diabetic = self.df['is_diabetic'].tolist() if 'is_diabetic' in self.df.columns else None
            else:
                raise ValueError('CSV文件缺少 id_code/diagnosis 或 image/label 字段')
        else:
            # 从目录结构推断标签
            self.images, self.labels = self._load_from_directory()
            self.is_diabetic = None
    
    def _load_from_directory(self) -> Tuple[List[str], List[int]]:
        """从目录结构加载图像和标签"""
        images = []
        labels = []
        
        # 假设目录结构为: data_dir/class_name/image.jpg
        for class_idx, class_name in enumerate(os.listdir(self.data_dir)):
            class_dir = os.path.join(self.data_dir, class_name)
            if os.path.isdir(class_dir):
                for img_file in os.listdir(class_dir):
                    if img_file.lower().endswith(('.png', '.jpg', '.jpeg')):
                        images.append(os.path.join(class_dir, img_file))
                        labels.append(class_idx)
        
        return images, labels
    
    def __len__(self) -> int:
        return len(self.images)
    
    def __getitem__(self, idx: int):
        """获取单个样本,支持多任务输出。自动尝试多种图片后缀,跳过无法读取的图片。"""
        import warnings
        img_path = self.images[idx]
        label = self.labels[idx]
        is_diabetic = self.is_diabetic[idx] if self.is_diabetic is not None else None

        # 自动尝试多种图片后缀
        if not os.path.exists(img_path):
            base, ext = os.path.splitext(img_path)
            tried = [img_path]
            for suf in ['.png', '.jpg', '.jpeg', '.JPG', '.PNG', '.JPEG']:
                alt_path = base + suf
                if os.path.exists(alt_path):
                    img_path = alt_path
                    break
                tried.append(alt_path)

        image = cv2.imread(img_path)
        if image is None:
            warnings.warn(f"跳过无法读取图像: {img_path}")
            # 返回None,DataLoader需配合collate_fn过滤
            return None

        # 转换BGR到RGB
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

        # 预处理:裁剪和调整大小
        image = self._preprocess_image(image)

        # 应用数据增强
        if self.transform:
            augmented = self.transform(image=image)
            image = augmented['image']
        else:
            # 默认变换
            transform = A.Compose([
                A.Resize(self.image_size, self.image_size),
                A.Normalize(
                    mean=[0.485, 0.456, 0.406],
                    std=[0.229, 0.224, 0.225]
                ),
                ToTensorV2()
            ])
            augmented = transform(image=image)
            image = augmented['image']

        # 返回多任务标签(image, label, is_diabetic),兼容旧用法
        if is_diabetic is not None:
            return image, label, is_diabetic
        else:
            return image, label
    
    def _preprocess_image(self, image: np.ndarray) -> np.ndarray:
        """眼底图像预处理"""
        # 去除黑色边框
        gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
        
        # 找到非黑色区域
        _, thresh = cv2.threshold(gray, 10, 255, cv2.THRESH_BINARY)
        contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        
        if contours:
            # 找到最大轮廓
            largest_contour = max(contours, key=cv2.contourArea)
            x, y, w, h = cv2.boundingRect(largest_contour)
            
            # 裁剪图像
            image = image[y:y+h, x:x+w]
        
        return image


def create_data_transforms(config: dict, is_training: bool = True) -> A.Compose:
    """创建数据变换"""
    image_size = config['data']['image_size']
    if is_training:
        aug_config = config.get('augmentation', {})
        transforms_list = []
        # CLAHE
        if aug_config.get('clahe', False):
            transforms_list.append(A.CLAHE(clip_limit=2.0, p=0.5))
        # 随机旋转
        if aug_config.get('rotation', 0) > 0:
            transforms_list.append(A.Rotate(limit=aug_config['rotation'], p=0.5))
        # 随机水平翻转
        if aug_config.get('horizontal_flip', False):
            transforms_list.append(A.HorizontalFlip(p=0.5))
        # 亮度/对比度
        if aug_config.get('brightness', 0) > 0 or aug_config.get('contrast', 0) > 0:
            transforms_list.append(A.RandomBrightnessContrast(
                brightness_limit=aug_config.get('brightness', 0.15),
                contrast_limit=aug_config.get('contrast', 0.15),
                p=0.5
            ))
        # 高斯模糊
        if aug_config.get('blur', False):
            transforms_list.append(A.GaussianBlur(blur_limit=(3, 5), p=aug_config.get('blur_prob', 0.2)))
        # 其它增强可按需添加
        transforms_list.append(A.Resize(image_size, image_size))
        transforms_list.append(A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]))
        transforms_list.append(ToTensorV2())
    else:
        transforms_list = [
            A.Resize(image_size, image_size),
            A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
            ToTensorV2()
        ]
    return A.Compose(transforms_list)


def create_data_loaders(config: dict) -> Tuple[DataLoader, DataLoader, Optional[DataLoader]]:
    """创建数据加载器"""
    data_config = config['data']
    
    # 创建变换
    train_transform = create_data_transforms(config, is_training=True)
    val_transform = create_data_transforms(config, is_training=False)
    
    # 创建数据集
    train_dataset = DiabeticRetinopathyDataset(
        data_dir=data_config['train_dir'],
        transform=train_transform,
        image_size=data_config['image_size']
    )
    
    val_dataset = DiabeticRetinopathyDataset(
        data_dir=data_config['val_dir'],
        transform=val_transform,
        image_size=data_config['image_size']
    )
    
    # 创建数据加载器
    train_loader = DataLoader(
        train_dataset,
        batch_size=data_config['batch_size'],
        shuffle=True,
        num_workers=data_config['num_workers'],
        pin_memory=True
    )
    
    val_loader = DataLoader(
        val_dataset,
        batch_size=data_config['batch_size'],
        shuffle=False,
        num_workers=data_config['num_workers'],
        pin_memory=True
    )
    
    # 测试集(可选)
    test_loader = None
    if os.path.exists(data_config.get('test_dir', '')):
        test_dataset = DiabeticRetinopathyDataset(
            data_dir=data_config['test_dir'],
            transform=val_transform,
            image_size=data_config['image_size']
        )
        test_loader = DataLoader(
            test_dataset,
            batch_size=data_config['batch_size'],
            shuffle=False,
            num_workers=data_config['num_workers'],
            pin_memory=True
        )
    
    return train_loader, val_loader, test_loader


def get_class_weights(data_dir: str, num_classes: int = 5) -> torch.Tensor:
    """计算类别权重用于处理数据不平衡"""
    class_counts = [0] * num_classes
    
    for class_idx, class_name in enumerate(os.listdir(data_dir)):
        class_dir = os.path.join(data_dir, class_name)
        if os.path.isdir(class_dir):
            count = len([f for f in os.listdir(class_dir) 
                        if f.lower().endswith(('.png', '.jpg', '.jpeg'))])
            if class_idx < num_classes:
                class_counts[class_idx] = count
    
    # 计算权重(逆频率)
    total_samples = sum(class_counts)
    class_weights = [total_samples / (num_classes * count) if count > 0 else 0 
                    for count in class_counts]
    
    return torch.FloatTensor(class_weights)


if __name__ == "__main__":
    # 测试数据加载器
    with open("configs/config.yaml", 'r', encoding='utf-8') as f:
        config = yaml.safe_load(f)
    
    try:
        train_loader, val_loader, test_loader = create_data_loaders(config)
        print(f"训练集样本数: {len(train_loader.dataset)}")
        print(f"验证集样本数: {len(val_loader.dataset)}")
        if test_loader:
            print(f"测试集样本数: {len(test_loader.dataset)}")
        
        # 测试一个批次
        for batch_idx, (images, labels) in enumerate(train_loader):
            print(f"批次 {batch_idx}: 图像形状 {images.shape}, 标签形状 {labels.shape}")
            break
            
    except Exception as e:
        print(f"数据加载测试失败: {e}")
        print("请确保数据目录结构正确,或创建示例数据进行测试")