Spaces:
Sleeping
Sleeping
File size: 25,186 Bytes
04103fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 |
"""
推理模块
支持单张图像和批量推理,以及可视化
"""
import os
import torch
import torch.nn.functional as F
import cv2
import numpy as np
from PIL import Image
import yaml
import matplotlib.pyplot as plt
from typing import List, Tuple, Dict, Optional, Union
import albumentations as A
from albumentations.pytorch import ToTensorV2
"""
Grad-CAM 相关依赖(pytorch-grad-cam)在部分 Python/平台上可能不可用。
已改为惰性导入:仅在启用 grad_cam 时尝试 import,失败将优雅降级。
"""
import time
from src.models import create_model
from src.data_loader import create_data_transforms
class DRPredictor:
def print_model_profile(self, input_size: Tuple[int, int] = None):
"""打印模型参数量、FLOPs、模型大小等信息(支持量化/非量化)。"""
from src.models import count_parameters, model_size_mb
input_size = input_size or (self.config['data']['image_size'], self.config['data']['image_size'])
print("模型参数量: %d" % count_parameters(self.model))
print("模型大小: %.2f MB" % model_size_mb(self.model))
try:
from thop import profile
dummy = torch.randn(1, 3, input_size[0], input_size[1]).to(self.device)
flops, params = profile(self.model, inputs=(dummy,), verbose=False)
print("FLOPs: %.2f M" % (flops / 1e6))
except Exception as e:
print(f"FLOPs统计失败: {e}")
"""糖尿病视网膜病变预测器"""
def __init__(self, config_path: str, model_path: str = None):
"""
初始化预测器
from src.models import create_model
from src.data_loader import DiabeticRetinopathyDataset
Args:
config_path: 配置文件路径
model_path: 模型权重路径,如果为None则使用配置文件中的路径
"""
with open(config_path, 'r', encoding='utf-8') as f:
self.config = yaml.safe_load(f)
self.device = torch.device(
f"cuda:{self.config['device']['gpu_id']}"
if self.config['device']['use_gpu'] and torch.cuda.is_available()
else "cpu"
)
# 加载模型
self.model = create_model(self.config).to(self.device)
model_path = model_path or self.config['inference']['model_path']
if os.path.exists(model_path):
checkpoint = torch.load(model_path, map_location=self.device)
if 'model_state_dict' in checkpoint:
self.model.load_state_dict(checkpoint['model_state_dict'])
else:
self.model.load_state_dict(checkpoint)
print(f"加载模型权重: {model_path}")
else:
print(f"警告: 模型文件不存在 {model_path}")
self.model.eval()
# 类别名称
self.class_names = self.config['data']['class_names']
# 创建预处理变换
self.transform = self._create_transform()
# 初始化GradCAM(用于可视化)
self.grad_cam = None
if self.config['inference'].get('grad_cam', False):
self._setup_grad_cam()
def load_config(config_path='configs/config.yaml'):
with open(config_path, 'r', encoding='utf-8') as f:
return yaml.safe_load(f)
def run_inference(model, dataloader, device):
model.eval()
results = []
with torch.no_grad():
for batch in dataloader:
# 兼容多任务
if len(batch) == 3:
images, labels, is_diabetic = batch
else:
images, labels = batch
is_diabetic = None
images = images.to(device)
outputs = model(images)
batch_size = images.size(0)
# 获取图片名
image_names = None
if hasattr(dataloader.dataset, 'df') and 'id_code' in dataloader.dataset.df.columns:
image_names = dataloader.dataset.df['id_code'].values
elif hasattr(dataloader.dataset, 'images'):
image_names = [os.path.basename(p) for p in dataloader.dataset.images]
# 预测
if isinstance(outputs, dict):
grading_logits = outputs['grading']
diabetic_logits = outputs['diabetic']
grading_pred = grading_logits.argmax(1).cpu().numpy()
diabetic_prob = torch.sigmoid(diabetic_logits).cpu().numpy()
diabetic_pred = (diabetic_prob > 0.5).astype(int)
grading_probs = torch.softmax(grading_logits, dim=1).cpu().numpy()
else:
grading_logits = outputs
grading_pred = grading_logits.argmax(1).cpu().numpy()
grading_probs = torch.softmax(grading_logits, dim=1).cpu().numpy()
diabetic_pred = None
diabetic_prob = None
for i in range(batch_size):
result = {}
# 图片名
if image_names is not None:
result['image'] = image_names[i]
# 标签
result['label'] = int(labels[i].cpu().numpy())
result['pred'] = int(grading_pred[i])
# 多分类概率
for c in range(grading_probs.shape[1]):
result[f'pred_{c}'] = float(grading_probs[i, c])
# 二分类标签/概率
if is_diabetic is not None:
result['is_diabetic'] = int(is_diabetic[i].cpu().numpy())
if diabetic_pred is not None:
result['is_diabetic_pred'] = int(diabetic_pred[i])
result['is_diabetic_prob'] = float(diabetic_prob[i])
results.append(result)
return results
def main():
config = load_config()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = create_model(config)
model_path = config['inference']['model_path']
checkpoint = torch.load(model_path, map_location=device)
if 'model_state_dict' in checkpoint:
model.load_state_dict(checkpoint['model_state_dict'])
else:
model.load_state_dict(checkpoint)
model.to(device)
# 推理数据集
test_csv = os.path.join(config['data']['test_dir'], '../test_labels.csv')
from src.data_loader import DiabeticRetinopathyDataset
dataset = DiabeticRetinopathyDataset(
data_dir=config['data']['test_dir'],
csv_file=test_csv,
image_size=config['data']['image_size']
)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=32, shuffle=False)
results = run_inference(model, dataloader, device)
# 保存结果
df = pd.DataFrame(results)
# 自动生成 predictions.csv 供所有可视化脚本使用
os.makedirs('evaluation_results', exist_ok=True)
df.to_csv('evaluation_results/predictions.csv', index=False)
print('推理结果已保存为 evaluation_results/predictions.csv')
if __name__ == '__main__':
main()
def quantize_model(self):
"""对模型线性层执行动态量化(CPU 推理提速与减小体积)。"""
if self.device.type != 'cpu':
print("提示: 量化仅在 CPU 推理时有意义,已跳过")
return
try:
import torch.nn as nn
self.model = torch.quantization.quantize_dynamic(
self.model, {nn.Linear}, dtype=torch.qint8
)
self.model.eval()
print("已对模型执行动态量化(Linear→int8)")
except Exception as e:
print(f"量化失败,已跳过: {e}")
def _create_transform(self) -> A.Compose:
"""创建预处理变换"""
image_size = self.config['data']['image_size']
return A.Compose([
A.Resize(image_size, image_size),
A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
ToTensorV2()
])
def _setup_grad_cam(self):
"""设置GradCAM(使用自研模块)。"""
try:
from utils.explainability import GradCAM
except Exception as e:
print(f"自研 GradCAM 模块加载失败: {e}")
self.grad_cam = None
return
# 根据模型类型选择目标层
model_name = self.config['model']['name'].lower()
if 'efficientnet' in model_name:
target_layers = [self.model.backbone.conv_head]
elif 'resnet' in model_name:
target_layers = [self.model.backbone[-1][-1].conv2]
elif 'vit' in model_name:
target_layers = [self.model.backbone.norm]
else:
# 默认使用最后一个卷积层
target_layers = []
for name, module in self.model.named_modules():
if isinstance(module, torch.nn.Conv2d):
target_layers = [module]
if target_layers:
self.grad_cam = GradCAM(
model=self.model,
target_layers=target_layers,
use_cuda=self.device.type == 'cuda'
)
print("已初始化自研 GradCAM 模块")
def preprocess_image(self, image_path: str) -> Tuple[torch.Tensor, np.ndarray]:
"""
预处理图像
Args:
image_path: 图像路径
Returns:
Tuple[torch.Tensor, np.ndarray]: 预处理后的tensor和原始图像
"""
# 读取图像
image = cv2.imread(image_path)
if image is None:
raise ValueError(f"无法读取图像: {image_path}")
# 转换颜色空间
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# 眼底图像预处理(去除黑边)
processed_image = self._preprocess_fundus_image(image_rgb)
# 应用变换
transformed = self.transform(image=processed_image)
tensor_image = transformed['image'].unsqueeze(0) # 添加批次维度
return tensor_image, processed_image
def _preprocess_fundus_image(self, image: np.ndarray) -> np.ndarray:
"""眼底图像预处理"""
# 转换为灰度图用于检测黑色边框
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
# 阈值化去除黑色背景
_, thresh = cv2.threshold(gray, 10, 255, cv2.THRESH_BINARY)
# 找到轮廓
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if contours:
# 找到最大轮廓(眼底区域)
largest_contour = max(contours, key=cv2.contourArea)
x, y, w, h = cv2.boundingRect(largest_contour)
# 裁剪图像
cropped = image[y:y+h, x:x+w]
return cropped
return image
def predict_single(self, image_path: str, return_probs: bool = True) -> Dict:
from utils.retina_detector import is_retina_image
if not is_retina_image(image_path):
raise ValueError('图片不符合要求,请上传标准视网膜照片。')
"""
单张图像预测
Args:
image_path: 图像路径
return_probs: 是否返回概率分布
Returns:
Dict: 预测结果
"""
start_time = time.time()
# 预处理
tensor_image, original_image = self.preprocess_image(image_path)
tensor_image = tensor_image.to(self.device)
# 推理
with torch.no_grad():
outputs = self.model(tensor_image)
probabilities = F.softmax(outputs, dim=1)
confidence, predicted = torch.max(probabilities, 1)
# 结果
predicted_class = predicted.item()
confidence_score = confidence.item()
result = {
'predicted_class': predicted_class,
'predicted_label': self.class_names[predicted_class],
'confidence': confidence_score,
'inference_time': time.time() - start_time
}
if return_probs:
result['probabilities'] = {
self.class_names[i]: prob.item()
for i, prob in enumerate(probabilities[0])
}
return result
def predict_batch(self, image_paths: List[str]) -> List[Dict]:
"""
批量预测
Args:
image_paths: 图像路径列表
Returns:
List[Dict]: 预测结果列表
"""
results = []
for image_path in image_paths:
try:
result = self.predict_single(image_path)
result['image_path'] = image_path
results.append(result)
except Exception as e:
print(f"预测失败 {image_path}: {e}")
results.append({
'image_path': image_path,
'error': str(e)
})
return results
def generate_grad_cam(self, image_path: str, target_class: int = None) -> np.ndarray:
"""
生成GradCAM可视化
Args:
image_path: 图像路径
target_class: 目标类别,如果为None则使用预测类别
Returns:
np.ndarray: GradCAM可视化图像
"""
if self.grad_cam is None:
raise ValueError("GradCAM未初始化,请在配置中启用grad_cam")
# 预处理图像
tensor_image, original_image = self.preprocess_image(image_path)
tensor_image = tensor_image.to(self.device)
# 如果没有指定目标类别,使用预测类别
if target_class is None:
with torch.no_grad():
outputs = self.model(tensor_image)
_, predicted = torch.max(outputs, 1)
target_class = predicted.item()
# 生成GradCAM(使用自研模块)
grayscale_cam = self.grad_cam.forward(tensor_image, target_class)
# 将原图像标准化到[0,1]范围
normalized_image = original_image.astype(np.float32) / 255.0
# 调整图像尺寸匹配CAM
image_size = self.config['data']['image_size']
resized_image = cv2.resize(normalized_image, (image_size, image_size))
# 生成可视化图像(使用自研函数)
from utils.explainability import show_cam_on_image
visualization = show_cam_on_image(resized_image, grayscale_cam, use_rgb=True)
return visualization
def visualize_prediction(self, image_path: str, save_path: str = None) -> plt.Figure:
"""
可视化预测结果
Args:
image_path: 图像路径
save_path: 保存路径
Returns:
plt.Figure: matplotlib图形对象
"""
# 预测
result = self.predict_single(image_path)
# 创建图形
fig, axes = plt.subplots(1, 3, figsize=(18, 6))
# 原始图像
original_image = cv2.imread(image_path)
original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
axes[0].imshow(original_image)
axes[0].set_title('原始图像')
axes[0].axis('off')
# 预测结果
predicted_label = result['predicted_label']
confidence = result['confidence']
axes[1].text(0.1, 0.9, f'预测类别: {predicted_label}', transform=axes[1].transAxes,
fontsize=14, fontweight='bold')
axes[1].text(0.1, 0.8, f'置信度: {confidence:.3f}', transform=axes[1].transAxes,
fontsize=12)
# 概率分布
if 'probabilities' in result:
y_pos = 0.7
for class_name, prob in result['probabilities'].items():
color = 'red' if class_name == predicted_label else 'black'
axes[1].text(0.1, y_pos, f'{class_name}: {prob:.3f}',
transform=axes[1].transAxes, fontsize=10, color=color)
y_pos -= 0.08
axes[1].axis('off')
axes[1].set_title('预测结果')
# GradCAM可视化
if self.grad_cam is not None:
try:
grad_cam_viz = self.generate_grad_cam(image_path)
axes[2].imshow(grad_cam_viz)
axes[2].set_title('GradCAM可视化')
except Exception as e:
axes[2].text(0.5, 0.5, f'GradCAM生成失败:\n{str(e)}',
transform=axes[2].transAxes, ha='center', va='center')
axes[2].set_title('GradCAM可视化')
else:
axes[2].text(0.5, 0.5, 'GradCAM未启用',
transform=axes[2].transAxes, ha='center', va='center')
axes[2].set_title('GradCAM可视化')
axes[2].axis('off')
plt.tight_layout()
if save_path:
plt.savefig(save_path, dpi=300, bbox_inches='tight')
print(f"可视化结果已保存: {save_path}")
return fig
def predict_with_tta(self, image_path: str, tta_transforms: int = 5) -> Dict:
"""
使用测试时增强(TTA)进行预测
Args:
image_path: 图像路径
tta_transforms: TTA变换次数
Returns:
Dict: 预测结果
"""
# 读取和预处理图像
tensor_image, original_image = self.preprocess_image(image_path)
all_predictions = []
# 创建TTA变换
tta_transform = A.Compose([
A.HorizontalFlip(p=0.5),
A.VerticalFlip(p=0.5),
A.Rotate(limit=15, p=0.5),
A.Resize(self.config['data']['image_size'], self.config['data']['image_size']),
A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
ToTensorV2()
])
# 原始预测
with torch.no_grad():
tensor_image = tensor_image.to(self.device)
outputs = self.model(tensor_image)
probabilities = F.softmax(outputs, dim=1)
all_predictions.append(probabilities.cpu().numpy())
# TTA预测
for _ in range(tta_transforms):
augmented = tta_transform(image=original_image)
aug_tensor = augmented['image'].unsqueeze(0).to(self.device)
with torch.no_grad():
outputs = self.model(aug_tensor)
probabilities = F.softmax(outputs, dim=1)
all_predictions.append(probabilities.cpu().numpy())
# 平均预测结果
avg_predictions = np.mean(all_predictions, axis=0)[0]
predicted_class = np.argmax(avg_predictions)
confidence = avg_predictions[predicted_class]
return {
'predicted_class': predicted_class,
'predicted_label': self.class_names[predicted_class],
'confidence': confidence,
'probabilities': {
self.class_names[i]: prob
for i, prob in enumerate(avg_predictions)
},
'tta_used': True
}
def batch_inference(config_path: str, model_path: str,
input_dir: str, output_file: str):
"""
批量推理工具函数
Args:
config_path: 配置文件路径
model_path: 模型路径
input_dir: 输入图像目录
output_file: 输出CSV文件路径
"""
import pandas as pd
# 创建预测器
predictor = DRPredictor(config_path, model_path)
# 获取所有图像文件
image_extensions = ['.jpg', '.jpeg', '.png', '.bmp']
image_paths = []
for ext in image_extensions:
image_paths.extend(
[os.path.join(input_dir, f) for f in os.listdir(input_dir)
if f.lower().endswith(ext)]
)
if not image_paths:
print(f"在目录 {input_dir} 中未找到图像文件")
return
print(f"找到 {len(image_paths)} 张图像,开始批量推理...")
# 批量预测
results = predictor.predict_batch(image_paths)
# 整理结果
df_data = []
for result in results:
if 'error' not in result:
row = {
'image_path': os.path.basename(result['image_path']),
'predicted_class': result['predicted_class'],
'predicted_label': result['predicted_label'],
'confidence': result['confidence'],
'inference_time': result['inference_time']
}
# 添加概率分布
if 'probabilities' in result:
for class_name, prob in result['probabilities'].items():
row[f'prob_{class_name}'] = prob
df_data.append(row)
else:
df_data.append({
'image_path': os.path.basename(result['image_path']),
'error': result['error']
})
# 保存结果
df = pd.DataFrame(df_data)
df.to_csv(output_file, index=False, encoding='utf-8')
print(f"结果已保存到: {output_file}")
# 统计
if 'predicted_class' in df.columns:
print("\n预测分布:")
print(df['predicted_label'].value_counts())
print(f"\n平均置信度: {df['confidence'].mean():.3f}")
print(f"平均推理时间: {df['inference_time'].mean():.3f}s")
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='糖尿病视网膜病变预测')
parser.add_argument('--config', type=str, default='configs/config.yaml', help='配置文件路径')
parser.add_argument('--model', type=str, help='模型权重路径')
parser.add_argument('--image', type=str, help='单张图像预测')
parser.add_argument('--batch_dir', type=str, help='批量预测目录')
parser.add_argument('--output', type=str, default='predictions.csv', help='输出文件')
parser.add_argument('--visualize', action='store_true', help='可视化预测结果')
parser.add_argument('--tta', action='store_true', help='单图或批量预测时启用TTA')
parser.add_argument('--quantize', action='store_true', help='启用动态量化(CPU 更快、更小)')
args = parser.parse_args()
if args.image:
# 单张图像预测
predictor = DRPredictor(args.config, args.model)
if args.quantize:
predictor.quantize_model()
predictor.print_model_profile()
if args.tta:
result = predictor.predict_with_tta(args.image)
else:
result = predictor.predict_single(args.image)
print("预测结果:")
print(f"类别: {result['predicted_label']}")
print(f"置信度: {result['confidence']:.3f}")
print(f"推理时间: {result['inference_time']:.3f}s")
if 'probabilities' in result:
print("\n概率分布:")
for class_name, prob in result['probabilities'].items():
print(f" {class_name}: {prob:.3f}")
if args.visualize:
save_path = args.image.replace('.jpg', '_prediction.png').replace('.png', '_prediction.png')
fig = predictor.visualize_prediction(args.image, save_path)
plt.show()
elif args.batch_dir:
# 批量预测
predictor = DRPredictor(args.config, args.model)
if args.quantize:
predictor.quantize_model()
predictor.print_model_profile()
if args.tta:
# 手动实现带TTA的批量推理
import os
import pandas as pd
image_extensions = ['.jpg', '.jpeg', '.png', '.bmp']
image_paths = []
for ext in image_extensions:
image_paths.extend(
[os.path.join(args.batch_dir, f) for f in os.listdir(args.batch_dir)
if f.lower().endswith(ext)]
)
results = []
for image_path in image_paths:
try:
r = predictor.predict_with_tta(image_path)
r['image_path'] = image_path
results.append(r)
except Exception as e:
results.append({'image_path': image_path, 'error': str(e)})
df = pd.DataFrame(results)
df.to_csv(args.output, index=False, encoding='utf-8')
print(f"结果已保存到: {args.output}")
else:
# 普通批量推理
batch_inference(args.config, args.model, args.batch_dir, args.output)
else:
print("请指定 --image 或 --batch_dir 参数")
|