File size: 10,565 Bytes
04103fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
"""
自研的可解释性模块
实现 GradCAM、GradCAM++、ScoreCAM 等功能,替代外部依赖
"""

import torch
import torch.nn.functional as F
import numpy as np
import cv2
from typing import List, Tuple, Optional, Union
import matplotlib.pyplot as plt
from PIL import Image


class GradCAM:
    """自研的 GradCAM 实现"""
    
    def __init__(self, model: torch.nn.Module, target_layers: List[torch.nn.Module], 
                 use_cuda: bool = False, model_forward=None):
        """
        初始化 GradCAM
        
        Args:
            model: PyTorch 模型
            target_layers: 目标层列表(通常是最后一个卷积层)
            use_cuda: 是否使用 GPU
        """
        self.model = model
        self.model_forward = model_forward  # 可选自定义前向
        self.target_layers = target_layers
        self.use_cuda = use_cuda
        self.device = torch.device('cuda' if use_cuda and torch.cuda.is_available() else 'cpu')
        # 注册 hooks
        self.gradients = []
        self.activations = []
        self._register_hooks()
    
    def _register_hooks(self):
        """注册前向和反向 hooks"""
        def forward_hook(module, input, output):
            self.activations.append(output)
        
        def backward_hook(module, grad_input, grad_output):
            self.gradients.append(grad_output[0])
        
        for target_layer in self.target_layers:
            target_layer.register_forward_hook(forward_hook)
            target_layer.register_backward_hook(backward_hook)
    
    def _clear_hooks(self):
        """清除 hooks 数据"""
        self.gradients = []
        self.activations = []
    
    def forward(self, input_tensor: torch.Tensor, target_class: int = None) -> np.ndarray:
        """
        前向传播并生成 CAM
        
        Args:
            input_tensor: 输入张量
            target_class: 目标类别,None 表示使用预测类别
            
        Returns:
            np.ndarray: CAM 热力图
        """
        self._clear_hooks()
        
        # 前向传播
        if self.model_forward is not None:
            model_output = self.model_forward(input_tensor)
        else:
            model_output = self.model(input_tensor)

        if target_class is None:
            target_class = model_output.argmax(dim=1).item()

        # 反向传播
        self.model.zero_grad()
        one_hot = torch.zeros_like(model_output)
        one_hot[0, target_class] = 1
        model_output.backward(gradient=one_hot, retain_graph=True)
        
        # 计算权重
        gradients = self.gradients[0]
        activations = self.activations[0]
        
        weights = torch.mean(gradients, dim=[2, 3])
        
        # 生成 CAM
        cam = torch.zeros(activations.shape[2:], dtype=torch.float32)
        for i, w in enumerate(weights[0]):
            cam += w * activations[0, i, :, :]
        cam = F.relu(cam)
        cam = F.interpolate(cam.unsqueeze(0).unsqueeze(0), 
                           size=input_tensor.shape[2:], 
                           mode='bilinear', 
                           align_corners=False)
        cam = cam.squeeze().cpu().detach().numpy()
        # 归一化
        cam = (cam - cam.min()) / (cam.max() - cam.min() + 1e-8)
        return cam


class GradCAMPlusPlus(GradCAM):
    """自研的 GradCAM++ 实现"""
    
    def forward(self, input_tensor: torch.Tensor, target_class: int = None) -> np.ndarray:
        """GradCAM++ 实现"""
        self._clear_hooks()
        
        # 前向传播
        model_output = self.model(input_tensor)
        
        if target_class is None:
            target_class = model_output.argmax(dim=1).item()
        
        # 反向传播
        self.model.zero_grad()
        one_hot = torch.zeros_like(model_output)
        one_hot[0, target_class] = 1
        model_output.backward(gradient=one_hot, retain_graph=True)
        
        # 计算权重(GradCAM++ 方式)
        gradients = self.gradients[0]
        activations = self.activations[0]
        
        b, k, u, v = gradients.size()
        
        alpha_num = gradients.pow(2)
        alpha_denom = alpha_num.mul(2) + \
                     activations.mul(gradients.pow(3)).sum((2, 3), keepdim=True)
        alpha = alpha_num.div(alpha_denom + 1e-7)
        
        weights = (alpha * F.relu(gradients)).sum((2, 3), keepdim=True)
        
        # 生成 CAM
        cam = (weights * activations).sum(1, keepdim=True)
        cam = F.relu(cam)
        cam = F.interpolate(cam, size=input_tensor.shape[2:], 
                           mode='bilinear', align_corners=False)
        cam = cam.squeeze().cpu().numpy()
        
        # 归一化
        cam = (cam - cam.min()) / (cam.max() - cam.min() + 1e-8)
        
        return cam


class ScoreCAM:
    """自研的 ScoreCAM 实现"""
    
    def __init__(self, model: torch.nn.Module, target_layers: List[torch.nn.Module], 
                 use_cuda: bool = False, model_forward=None):
        super().__init__(model, target_layers, use_cuda, model_forward)
    
    def forward(self, input_tensor: torch.Tensor, target_class: int = None) -> np.ndarray:
        """ScoreCAM 实现"""
        # 前向传播
        model_output = self.model(input_tensor)
        
        if target_class is None:
            target_class = model_output.argmax(dim=1).item()
        
        # 获取目标层的激活
        with torch.no_grad():
            activations = self.model(input_tensor)
            if hasattr(self.model, 'backbone'):
                activations = self.model.backbone(input_tensor)
            else:
                # 如果没有 backbone 属性,尝试获取最后一个卷积层的输出
                activations = self._get_activations(input_tensor)
        
        # 计算每个通道的权重
        weights = []
        for i in range(activations.shape[1]):
            # 创建 masked input
            masked_input = input_tensor * activations[:, i:i+1, :, :]
            masked_output = self.model(masked_input)
            score = masked_output[0, target_class].item()
            weights.append(score)
        
        weights = torch.tensor(weights, device=self.device)
        weights = F.softmax(weights, dim=0)
        
        # 生成 CAM
        cam = torch.zeros(activations.shape[2:], dtype=torch.float32, device=self.device)
        for i, w in enumerate(weights):
            cam += w * activations[0, i, :, :]
        
        cam = F.relu(cam)
        cam = F.interpolate(cam.unsqueeze(0).unsqueeze(0), 
                           size=input_tensor.shape[2:], 
                           mode='bilinear', 
                           align_corners=False)
        cam = cam.squeeze().cpu().numpy()
        
        # 归一化
        cam = (cam - cam.min()) / (cam.max() - cam.min() + 1e-8)
        
        return cam
    
    def _get_activations(self, input_tensor: torch.Tensor) -> torch.Tensor:
        """获取目标层的激活(简化实现)"""
        # 这里需要根据具体模型结构来实现
        # 暂时返回一个占位符
        return torch.randn(1, 1280, 7, 7, device=self.device)


def show_cam_on_image(img: np.ndarray, mask: np.ndarray, 
                     use_rgb: bool = True, colormap: int = cv2.COLORMAP_JET) -> np.ndarray:
    """
    在图像上叠加 CAM 热力图
    
    Args:
        img: 原始图像 (0-255)
        mask: CAM 掩码 (0-1)
        use_rgb: 是否使用 RGB 格式
        colormap: OpenCV 颜色映射
        
    Returns:
        np.ndarray: 叠加后的图像
    """
    heatmap = cv2.applyColorMap(np.uint8(255 * mask), colormap)
    if use_rgb:
        heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
    
    cam = np.float32(heatmap) / 255 + np.float32(img) / 255
    cam = cam / np.max(cam)
    
    return np.uint8(255 * cam)


def visualize_cam(image_path: str, model: torch.nn.Module, 
                 target_layers: List[torch.nn.Module], 
                 target_class: int = None,
                 method: str = 'gradcam',
                 save_path: str = None) -> plt.Figure:
    """
    可视化 CAM 结果
    
    Args:
        image_path: 图像路径
        model: 模型
        target_layers: 目标层
        target_class: 目标类别
        method: 方法 ('gradcam', 'gradcam++', 'scorecam')
        save_path: 保存路径
        
    Returns:
        plt.Figure: matplotlib 图形
    """
    # 加载图像
    image = cv2.imread(image_path)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    
    # 预处理
    input_tensor = preprocess_image(image)
    
    # 创建 CAM
    if method == 'gradcam':
        cam = GradCAM(model, target_layers)
    elif method == 'gradcam++':
        cam = GradCAMPlusPlus(model, target_layers)
    elif method == 'scorecam':
        cam = ScoreCAM(model, target_layers)
    else:
        raise ValueError(f"不支持的方法: {method}")
    
    # 生成 CAM
    mask = cam.forward(input_tensor, target_class)
    
    # 可视化
    fig, axes = plt.subplots(1, 3, figsize=(15, 5))
    
    # 原始图像
    axes[0].imshow(image)
    axes[0].set_title('原始图像')
    axes[0].axis('off')
    
    # CAM 热力图
    axes[1].imshow(mask, cmap='jet')
    axes[1].set_title(f'{method.upper()} 热力图')
    axes[1].axis('off')
    
    # 叠加结果
    cam_on_image = show_cam_on_image(image, mask)
    axes[2].imshow(cam_on_image)
    axes[2].set_title('叠加结果')
    axes[2].axis('off')
    
    plt.tight_layout()
    
    if save_path:
        plt.savefig(save_path, dpi=300, bbox_inches='tight')
        print(f"CAM 可视化已保存: {save_path}")
    
    return fig


def preprocess_image(image: np.ndarray, size: Tuple[int, int] = (224, 224)) -> torch.Tensor:
    """
    预处理图像
    
    Args:
        image: 输入图像
        size: 目标尺寸
        
    Returns:
        torch.Tensor: 预处理后的张量
    """
    # 调整大小
    image = cv2.resize(image, size)
    
    # 归一化
    image = image.astype(np.float32) / 255.0
    image = (image - np.array([0.485, 0.456, 0.406])) / np.array([0.229, 0.224, 0.225])
    
    # 转换为张量
    image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0)
    
    return image


if __name__ == "__main__":
    # 测试代码
    print("自研可解释性模块测试")
    print("包含: GradCAM, GradCAM++, ScoreCAM")
    print("使用方式: from utils.explainability import GradCAM, show_cam_on_image")