File size: 14,195 Bytes
04103fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
"""
评估指标计算工具
"""

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import (
    accuracy_score, precision_recall_fscore_support, 
    confusion_matrix, classification_report, cohen_kappa_score,
    roc_auc_score, roc_curve, auc
)
from sklearn.preprocessing import label_binarize
import pandas as pd
from typing import List, Dict, Tuple, Optional
import warnings
warnings.filterwarnings('ignore')


def calculate_metrics(y_true: List[int], y_pred: List[int], 
                     class_names: List[str] = None) -> Dict:
    """
    计算分类指标
    
    Args:
        y_true: 真实标签
        y_pred: 预测标签  
        class_names: 类别名称
        
    Returns:
        Dict: 指标字典
    """
    # 基本指标
    accuracy = accuracy_score(y_true, y_pred)
    precision, recall, f1, support = precision_recall_fscore_support(
        y_true, y_pred, average=None, zero_division=0
    )
    
    # 宏观和微观平均
    macro_precision, macro_recall, macro_f1, _ = precision_recall_fscore_support(
        y_true, y_pred, average='macro', zero_division=0
    )
    micro_precision, micro_recall, micro_f1, _ = precision_recall_fscore_support(
        y_true, y_pred, average='micro', zero_division=0
    )
    weighted_precision, weighted_recall, weighted_f1, _ = precision_recall_fscore_support(
        y_true, y_pred, average='weighted', zero_division=0
    )
    
    # Cohen's Kappa
    kappa = cohen_kappa_score(y_true, y_pred)
    
    # 混淆矩阵
    cm = confusion_matrix(y_true, y_pred)
    
    metrics = {
        'accuracy': accuracy,
        'macro_precision': macro_precision,
        'macro_recall': macro_recall,
        'macro_f1': macro_f1,
        'micro_precision': micro_precision,
        'micro_recall': micro_recall,
        'micro_f1': micro_f1,
        'weighted_precision': weighted_precision,
        'weighted_recall': weighted_recall,
        'weighted_f1': weighted_f1,
        'cohen_kappa': kappa,
        'confusion_matrix': cm,
        'support': support
    }
    
    # 每个类别的指标
    if class_names is None:
        class_names = [f'Class_{i}' for i in range(len(precision))]
    
    for i, class_name in enumerate(class_names):
        if i < len(precision):
            metrics[f'{class_name}_precision'] = precision[i]
            metrics[f'{class_name}_recall'] = recall[i]
            metrics[f'{class_name}_f1'] = f1[i]
            metrics[f'{class_name}_support'] = support[i]
    
    return metrics


def calculate_multiclass_auc(y_true: np.ndarray, y_scores: np.ndarray, 
                           num_classes: int) -> Dict:
    """
    计算多类别AUC指标
    
    Args:
        y_true: 真实标签 (one-hot或标签编码)
        y_scores: 预测概率
        num_classes: 类别数量
        
    Returns:
        Dict: AUC指标
    """
    # 转换为one-hot编码
    if y_true.ndim == 1:
        y_true_binary = label_binarize(y_true, classes=range(num_classes))
        if num_classes == 2:
            y_true_binary = np.hstack([1-y_true_binary, y_true_binary])
    else:
        y_true_binary = y_true
    
    # 计算每个类别的AUC
    auc_scores = {}
    fpr = {}
    tpr = {}
    
    for i in range(num_classes):
        if np.sum(y_true_binary[:, i]) > 0:  # 确保类别存在
            fpr[i], tpr[i], _ = roc_curve(y_true_binary[:, i], y_scores[:, i])
            auc_scores[f'class_{i}_auc'] = auc(fpr[i], tpr[i])
    
    # 宏观平均AUC
    if len(auc_scores) > 0:
        auc_scores['macro_auc'] = np.mean(list(auc_scores.values()))
    
    # 微观平均AUC(多类别)
    try:
        micro_auc = roc_auc_score(y_true_binary, y_scores, average='micro', multi_class='ovr')
        auc_scores['micro_auc'] = micro_auc
    except:
        pass
    
    auc_scores['fpr'] = fpr
    auc_scores['tpr'] = tpr
    
    return auc_scores


def plot_confusion_matrix(cm: np.ndarray, class_names: List[str], 
                         normalize: bool = False, title: str = 'Confusion Matrix',
                         save_path: str = None, figsize: Tuple[int, int] = (10, 8)):
    """
    绘制混淆矩阵
    
    Args:
        cm: 混淆矩阵
        class_names: 类别名称
        normalize: 是否标准化
        title: 图标题
        save_path: 保存路径
        figsize: 图像大小
    """
    if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
        fmt = '.2f'
    else:
        fmt = 'd'
    
    plt.figure(figsize=figsize)
    sns.heatmap(cm, annot=True, fmt=fmt, cmap='Blues', 
                xticklabels=class_names, yticklabels=class_names,
                cbar_kws={'label': 'Count' if not normalize else 'Proportion'})
    
    plt.title(title, fontsize=16)
    plt.xlabel('Predicted Label', fontsize=14)
    plt.ylabel('True Label', fontsize=14)
    plt.xticks(rotation=45)
    plt.yticks(rotation=0)
    plt.tight_layout()
    
    if save_path:
        plt.savefig(save_path, dpi=300, bbox_inches='tight')
        print(f"混淆矩阵已保存: {save_path}")
    
    return plt.gcf()


def plot_roc_curves(fpr: Dict, tpr: Dict, auc_scores: Dict, 
                   class_names: List[str], save_path: str = None,
                   figsize: Tuple[int, int] = (12, 8)):
    """
    绘制ROC曲线
    
    Args:
        fpr: 假正率字典
        tpr: 真正率字典
        auc_scores: AUC分数字典
        class_names: 类别名称
        save_path: 保存路径
        figsize: 图像大小
    """
    plt.figure(figsize=figsize)
    
    # 绘制每个类别的ROC曲线
    colors = plt.cm.Set1(np.linspace(0, 1, len(class_names)))
    
    for i, (color, class_name) in enumerate(zip(colors, class_names)):
        if i in fpr and i in tpr:
            auc_score = auc_scores.get(f'class_{i}_auc', 0)
            plt.plot(fpr[i], tpr[i], color=color, lw=2,
                    label=f'{class_name} (AUC = {auc_score:.3f})')
    
    # 对角线
    plt.plot([0, 1], [0, 1], 'k--', lw=2, alpha=0.8)
    
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xlabel('False Positive Rate', fontsize=14)
    plt.ylabel('True Positive Rate', fontsize=14)
    plt.title('Receiver Operating Characteristic (ROC) Curves', fontsize=16)
    plt.legend(loc="lower right")
    plt.grid(True, alpha=0.3)
    plt.tight_layout()
    
    if save_path:
        plt.savefig(save_path, dpi=300, bbox_inches='tight')
        print(f"ROC曲线已保存: {save_path}")
    
    return plt.gcf()


def plot_precision_recall_curve(y_true: np.ndarray, y_scores: np.ndarray,
                               class_names: List[str], save_path: str = None,
                               figsize: Tuple[int, int] = (12, 8)):
    """
    绘制Precision-Recall曲线
    
    Args:
        y_true: 真实标签 (one-hot编码)
        y_scores: 预测概率
        class_names: 类别名称
        save_path: 保存路径
        figsize: 图像大小
    """
    from sklearn.metrics import precision_recall_curve, average_precision_score
    
    plt.figure(figsize=figsize)
    colors = plt.cm.Set1(np.linspace(0, 1, len(class_names)))
    
    for i, (color, class_name) in enumerate(zip(colors, class_names)):
        if i < y_scores.shape[1]:
            precision, recall, _ = precision_recall_curve(y_true[:, i], y_scores[:, i])
            ap_score = average_precision_score(y_true[:, i], y_scores[:, i])
            
            plt.plot(recall, precision, color=color, lw=2,
                    label=f'{class_name} (AP = {ap_score:.3f})')
    
    plt.xlabel('Recall', fontsize=14)
    plt.ylabel('Precision', fontsize=14)
    plt.title('Precision-Recall Curves', fontsize=16)
    plt.legend(loc="lower left")
    plt.grid(True, alpha=0.3)
    plt.tight_layout()
    
    if save_path:
        plt.savefig(save_path, dpi=300, bbox_inches='tight')
        print(f"Precision-Recall曲线已保存: {save_path}")
    
    return plt.gcf()


def create_classification_report(y_true: List[int], y_pred: List[int],
                               class_names: List[str] = None,
                               save_path: str = None) -> pd.DataFrame:
    """
    创建分类报告DataFrame
    
    Args:
        y_true: 真实标签
        y_pred: 预测标签
        class_names: 类别名称
        save_path: 保存路径
        
    Returns:
        pd.DataFrame: 分类报告
    """
    report_dict = classification_report(
        y_true, y_pred, 
        target_names=class_names,
        output_dict=True,
        zero_division=0
    )
    
    df_report = pd.DataFrame(report_dict).transpose()
    
    if save_path:
        df_report.to_csv(save_path, encoding='utf-8')
        print(f"分类报告已保存: {save_path}")
    
    return df_report


def evaluate_model_comprehensive(y_true: List[int], y_pred: List[int], 
                               y_scores: Optional[np.ndarray] = None,
                               class_names: List[str] = None,
                               output_dir: str = 'evaluation_results') -> Dict:
    """
    综合评估模型
    
    Args:
        y_true: 真实标签
        y_pred: 预测标签
        y_scores: 预测概率(用于AUC计算)
        class_names: 类别名称
        output_dir: 输出目录
        
    Returns:
        Dict: 评估结果
    """
    import os
    os.makedirs(output_dir, exist_ok=True)
    
    # 基础指标
    metrics = calculate_metrics(y_true, y_pred, class_names)
    
    # 混淆矩阵可视化
    cm = metrics['confusion_matrix']
    
    # 原始计数
    plot_confusion_matrix(
        cm, class_names, normalize=False, 
        title='Confusion Matrix (Counts)',
        save_path=os.path.join(output_dir, 'confusion_matrix_counts.png')
    )
    plt.close()
    
    # 标准化
    plot_confusion_matrix(
        cm, class_names, normalize=True, 
        title='Confusion Matrix (Normalized)',
        save_path=os.path.join(output_dir, 'confusion_matrix_normalized.png')
    )
    plt.close()
    
    # 分类报告
    report_df = create_classification_report(
        y_true, y_pred, class_names,
        save_path=os.path.join(output_dir, 'classification_report.csv')
    )
    
    # AUC相关指标(如果提供了概率)
    if y_scores is not None:
        num_classes = len(class_names) if class_names else len(np.unique(y_true))
        
        # 转换标签为one-hot编码
        y_true_binary = label_binarize(y_true, classes=range(num_classes))
        if num_classes == 2:
            y_true_binary = np.hstack([1-y_true_binary, y_true_binary])
        
        # 计算AUC
        auc_metrics = calculate_multiclass_auc(y_true_binary, y_scores, num_classes)
        metrics.update(auc_metrics)
        
        # ROC曲线
        plot_roc_curves(
            auc_metrics['fpr'], auc_metrics['tpr'], auc_metrics,
            class_names, save_path=os.path.join(output_dir, 'roc_curves.png')
        )
        plt.close()
        
        # Precision-Recall曲线
        plot_precision_recall_curve(
            y_true_binary, y_scores, class_names,
            save_path=os.path.join(output_dir, 'precision_recall_curves.png')
        )
        plt.close()
    
    # 保存指标到文件
    metrics_df = pd.DataFrame([
        {'metric': k, 'value': v} for k, v in metrics.items()
        if isinstance(v, (int, float, np.number))
    ])
    metrics_df.to_csv(os.path.join(output_dir, 'metrics_summary.csv'), index=False)
    
    print(f"评估结果已保存到目录: {output_dir}")
    
    return metrics


def print_metrics_summary(metrics: Dict, class_names: List[str] = None):
    """
    打印指标摘要
    
    Args:
        metrics: 指标字典
        class_names: 类别名称
    """
    print("=" * 60)
    print("模型评估结果摘要")
    print("=" * 60)
    
    print(f"总体准确率: {metrics['accuracy']:.4f}")
    print(f"Cohen's Kappa: {metrics['cohen_kappa']:.4f}")
    print()
    
    print("宏观平均:")
    print(f"  精确率: {metrics['macro_precision']:.4f}")
    print(f"  召回率: {metrics['macro_recall']:.4f}")
    print(f"  F1分数: {metrics['macro_f1']:.4f}")
    print()
    
    print("加权平均:")
    print(f"  精确率: {metrics['weighted_precision']:.4f}")
    print(f"  召回率: {metrics['weighted_recall']:.4f}")
    print(f"  F1分数: {metrics['weighted_f1']:.4f}")
    print()
    
    if class_names:
        print("各类别性能:")
        print("-" * 60)
        print(f"{'类别':<15} {'精确率':<10} {'召回率':<10} {'F1分数':<10} {'样本数':<10}")
        print("-" * 60)
        
        for i, class_name in enumerate(class_names):
            precision_key = f'{class_name}_precision'
            recall_key = f'{class_name}_recall'
            f1_key = f'{class_name}_f1'
            support_key = f'{class_name}_support'
            
            if all(key in metrics for key in [precision_key, recall_key, f1_key, support_key]):
                print(f"{class_name:<15} "
                      f"{metrics[precision_key]:<10.4f} "
                      f"{metrics[recall_key]:<10.4f} "
                      f"{metrics[f1_key]:<10.4f} "
                      f"{int(metrics[support_key]):<10}")
    
    if 'macro_auc' in metrics:
        print(f"\n宏观平均AUC: {metrics['macro_auc']:.4f}")
    if 'micro_auc' in metrics:
        print(f"微观平均AUC: {metrics['micro_auc']:.4f}")
    
    print("=" * 60)


if __name__ == "__main__":
    # 测试评估指标
    np.random.seed(42)
    
    # 生成模拟数据
    n_samples = 1000
    n_classes = 5
    
    y_true = np.random.randint(0, n_classes, n_samples)
    y_pred = np.random.randint(0, n_classes, n_samples)
    y_scores = np.random.rand(n_samples, n_classes)
    y_scores = y_scores / y_scores.sum(axis=1, keepdims=True)  # 归一化为概率
    
    class_names = ['无病变', '轻度', '中度', '重度', '增殖性']
    
    # 综合评估
    results = evaluate_model_comprehensive(
        y_true, y_pred, y_scores, class_names, 'test_evaluation'
    )
    
    # 打印摘要
    print_metrics_summary(results, class_names)