Spaces:
Sleeping
Sleeping
File size: 18,848 Bytes
04103fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 |
"""
可视化工具模块
包含训练过程可视化、模型解释性可视化等
"""
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import cv2
from PIL import Image
import torch
import torch.nn.functional as F
from typing import List, Tuple, Dict, Optional, Union
import pandas as pd
from matplotlib.animation import FuncAnimation
import warnings
warnings.filterwarnings('ignore')
# 设置matplotlib中文字体
plt.rcParams['font.sans-serif'] = ['SimHei', 'DejaVu Sans']
plt.rcParams['axes.unicode_minus'] = False
def plot_training_curves(train_history: Dict, save_path: str = None,
figsize: Tuple[int, int] = (15, 10)):
"""
绘制训练曲线
Args:
train_history: 训练历史字典
save_path: 保存路径
figsize: 图像大小
"""
fig, axes = plt.subplots(2, 2, figsize=figsize)
epochs = range(1, len(train_history['train_loss']) + 1)
# 损失曲线
axes[0, 0].plot(epochs, train_history['train_loss'], 'b-', label='训练损失', linewidth=2)
axes[0, 0].plot(epochs, train_history['val_loss'], 'r-', label='验证损失', linewidth=2)
axes[0, 0].set_title('损失曲线', fontsize=14, fontweight='bold')
axes[0, 0].set_xlabel('Epoch')
axes[0, 0].set_ylabel('Loss')
axes[0, 0].legend()
axes[0, 0].grid(True, alpha=0.3)
# 准确率曲线
axes[0, 1].plot(epochs, train_history['train_acc'], 'b-', label='训练准确率', linewidth=2)
axes[0, 1].plot(epochs, train_history['val_acc'], 'r-', label='验证准确率', linewidth=2)
axes[0, 1].set_title('准确率曲线', fontsize=14, fontweight='bold')
axes[0, 1].set_xlabel('Epoch')
axes[0, 1].set_ylabel('Accuracy (%)')
axes[0, 1].legend()
axes[0, 1].grid(True, alpha=0.3)
# 学习率曲线
if 'lr' in train_history:
axes[1, 0].plot(epochs, train_history['lr'], 'g-', linewidth=2)
axes[1, 0].set_title('学习率变化', fontsize=14, fontweight='bold')
axes[1, 0].set_xlabel('Epoch')
axes[1, 0].set_ylabel('Learning Rate')
axes[1, 0].set_yscale('log')
axes[1, 0].grid(True, alpha=0.3)
# 训练摘要
best_val_acc = max(train_history['val_acc'])
best_epoch = train_history['val_acc'].index(best_val_acc) + 1
final_train_loss = train_history['train_loss'][-1]
final_val_loss = train_history['val_loss'][-1]
summary_text = f"""训练摘要:
最佳验证准确率: {best_val_acc:.2f}%
最佳epoch: {best_epoch}
最终训练损失: {final_train_loss:.4f}
最终验证损失: {final_val_loss:.4f}
总训练轮数: {len(epochs)}
"""
axes[1, 1].text(0.1, 0.9, summary_text, transform=axes[1, 1].transAxes,
fontsize=12, verticalalignment='top',
bbox=dict(boxstyle='round', facecolor='lightblue', alpha=0.8))
axes[1, 1].set_xlim(0, 1)
axes[1, 1].set_ylim(0, 1)
axes[1, 1].axis('off')
plt.tight_layout()
if save_path:
plt.savefig(save_path, dpi=300, bbox_inches='tight')
print(f"训练曲线已保存: {save_path}")
return fig
def plot_class_distribution(data_dir: str, class_names: List[str] = None,
save_path: str = None, figsize: Tuple[int, int] = (12, 8)):
"""
绘制数据集类别分布
Args:
data_dir: 数据目录
class_names: 类别名称
save_path: 保存路径
figsize: 图像大小
"""
import os
class_counts = {}
# 统计各类别样本数
for class_idx, class_folder in enumerate(os.listdir(data_dir)):
class_path = os.path.join(data_dir, class_folder)
if os.path.isdir(class_path):
count = len([f for f in os.listdir(class_path)
if f.lower().endswith(('.png', '.jpg', '.jpeg'))])
if class_names and class_idx < len(class_names):
class_name = class_names[class_idx]
else:
class_name = class_folder
class_counts[class_name] = count
# 绘制条形图
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=figsize)
# 条形图
classes = list(class_counts.keys())
counts = list(class_counts.values())
colors = plt.cm.Set3(np.linspace(0, 1, len(classes)))
bars = ax1.bar(classes, counts, color=colors, edgecolor='black', linewidth=1)
ax1.set_title('类别样本分布', fontsize=14, fontweight='bold')
ax1.set_xlabel('类别')
ax1.set_ylabel('样本数量')
ax1.tick_params(axis='x', rotation=45)
# 添加数值标签
for bar, count in zip(bars, counts):
ax1.text(bar.get_x() + bar.get_width()/2, bar.get_height() + max(counts)*0.01,
str(count), ha='center', va='bottom', fontweight='bold')
# 饼图
ax2.pie(counts, labels=classes, autopct='%1.1f%%', colors=colors,
startangle=90, wedgeprops={'edgecolor': 'black'})
ax2.set_title('类别比例分布', fontsize=14, fontweight='bold')
plt.tight_layout()
if save_path:
plt.savefig(save_path, dpi=300, bbox_inches='tight')
print(f"类别分布图已保存: {save_path}")
return fig, class_counts
def plot_sample_images(data_dir: str, class_names: List[str],
samples_per_class: int = 3,
save_path: str = None, figsize: Tuple[int, int] = (15, 10)):
"""
显示每个类别的样本图像
Args:
data_dir: 数据目录
class_names: 类别名称
samples_per_class: 每类显示的样本数
save_path: 保存路径
figsize: 图像大小
"""
import os
import random
n_classes = len(class_names)
fig, axes = plt.subplots(n_classes, samples_per_class, figsize=figsize)
if n_classes == 1:
axes = [axes]
for class_idx, class_name in enumerate(class_names):
class_dir = os.path.join(data_dir, class_name)
if not os.path.exists(class_dir):
# 尝试用索引查找目录
class_dirs = [d for d in os.listdir(data_dir) if os.path.isdir(os.path.join(data_dir, d))]
if class_idx < len(class_dirs):
class_dir = os.path.join(data_dir, class_dirs[class_idx])
if os.path.exists(class_dir):
# 获取图像文件
image_files = [f for f in os.listdir(class_dir)
if f.lower().endswith(('.png', '.jpg', '.jpeg'))]
# 随机选择样本
selected_files = random.sample(image_files,
min(samples_per_class, len(image_files)))
for sample_idx, img_file in enumerate(selected_files):
img_path = os.path.join(class_dir, img_file)
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
if samples_per_class == 1:
ax = axes[class_idx]
else:
ax = axes[class_idx, sample_idx]
ax.imshow(img)
ax.axis('off')
if sample_idx == 0:
ax.set_ylabel(class_name, fontsize=12, fontweight='bold')
# 填充空白位置
for sample_idx in range(len(selected_files), samples_per_class):
if samples_per_class == 1:
ax = axes[class_idx]
else:
ax = axes[class_idx, sample_idx]
ax.axis('off')
plt.suptitle('各类别样本展示', fontsize=16, fontweight='bold')
plt.tight_layout()
if save_path:
plt.savefig(save_path, dpi=300, bbox_inches='tight')
print(f"样本图像已保存: {save_path}")
return fig
def plot_model_comparison(results: List[Dict], save_path: str = None,
figsize: Tuple[int, int] = (15, 10)):
"""
比较不同模型的性能
Args:
results: 模型结果列表,每个元素包含模型名称和指标
save_path: 保存路径
figsize: 图像大小
"""
metrics_to_plot = ['accuracy', 'macro_f1', 'macro_precision', 'macro_recall']
model_names = [r['model_name'] for r in results]
fig, axes = plt.subplots(2, 2, figsize=figsize)
axes = axes.ravel()
for idx, metric in enumerate(metrics_to_plot):
values = [r['metrics'].get(metric, 0) for r in results]
colors = plt.cm.Set2(np.linspace(0, 1, len(model_names)))
bars = axes[idx].bar(model_names, values, color=colors,
edgecolor='black', linewidth=1)
axes[idx].set_title(f'{metric.replace("_", " ").title()}',
fontsize=12, fontweight='bold')
axes[idx].set_ylabel('Score')
axes[idx].tick_params(axis='x', rotation=45)
axes[idx].grid(True, alpha=0.3)
# 添加数值标签
for bar, value in zip(bars, values):
axes[idx].text(bar.get_x() + bar.get_width()/2,
bar.get_height() + max(values)*0.01,
f'{value:.3f}', ha='center', va='bottom', fontweight='bold')
plt.tight_layout()
if save_path:
plt.savefig(save_path, dpi=300, bbox_inches='tight')
print(f"模型比较图已保存: {save_path}")
return fig
def create_interactive_training_dashboard(train_history: Dict, save_path: str = None):
"""
创建交互式训练仪表板
Args:
train_history: 训练历史
save_path: 保存路径(HTML文件)
"""
# 惰性导入 plotly,未安装则给出提示
try:
import plotly.graph_objects as go
from plotly.subplots import make_subplots
except Exception as exc:
raise ImportError(
"使用 create_interactive_training_dashboard 需要安装 plotly,请运行: pip install plotly"
) from exc
epochs = list(range(1, len(train_history['train_loss']) + 1))
# 创建子图
fig = make_subplots(
rows=2, cols=2,
subplot_titles=('损失曲线', '准确率曲线', '学习率变化', '训练摘要'),
specs=[[{"secondary_y": False}, {"secondary_y": False}],
[{"secondary_y": False}, {"type": "table"}]]
)
# 损失曲线
fig.add_trace(
go.Scatter(x=epochs, y=train_history['train_loss'],
name='训练损失', line=dict(color='blue')),
row=1, col=1
)
fig.add_trace(
go.Scatter(x=epochs, y=train_history['val_loss'],
name='验证损失', line=dict(color='red')),
row=1, col=1
)
# 准确率曲线
fig.add_trace(
go.Scatter(x=epochs, y=train_history['train_acc'],
name='训练准确率', line=dict(color='blue')),
row=1, col=2
)
fig.add_trace(
go.Scatter(x=epochs, y=train_history['val_acc'],
name='验证准确率', line=dict(color='red')),
row=1, col=2
)
# 学习率变化
if 'lr' in train_history:
fig.add_trace(
go.Scatter(x=epochs, y=train_history['lr'],
name='学习率', line=dict(color='green')),
row=2, col=1
)
fig.update_yaxes(type="log", row=2, col=1)
# 训练摘要表格
best_val_acc = max(train_history['val_acc'])
best_epoch = train_history['val_acc'].index(best_val_acc) + 1
summary_data = [
['指标', '数值'],
['最佳验证准确率', f'{best_val_acc:.2f}%'],
['最佳Epoch', str(best_epoch)],
['最终训练损失', f'{train_history["train_loss"][-1]:.4f}'],
['最终验证损失', f'{train_history["val_loss"][-1]:.4f}'],
['总训练轮数', str(len(epochs))]
]
fig.add_trace(
go.Table(
header=dict(values=summary_data[0], fill_color='lightblue'),
cells=dict(values=list(zip(*summary_data[1:])), fill_color='white')
),
row=2, col=2
)
# 更新布局
fig.update_layout(
title='训练过程可视化仪表板',
height=800,
showlegend=False
)
if save_path:
fig.write_html(save_path)
print(f"交互式仪表板已保存: {save_path}")
return fig
def visualize_feature_maps(model: torch.nn.Module, image: torch.Tensor,
layer_name: str, save_path: str = None,
figsize: Tuple[int, int] = (20, 15)):
"""
可视化特征图
Args:
model: PyTorch模型
image: 输入图像tensor
layer_name: 要可视化的层名称
save_path: 保存路径
figsize: 图像大小
"""
# 注册hook获取特征图
features = {}
def hook_fn(module, input, output):
features['feature_map'] = output
# 找到目标层并注册hook
target_layer = None
for name, module in model.named_modules():
if layer_name in name:
target_layer = module
break
if target_layer is None:
print(f"未找到层: {layer_name}")
return None
handle = target_layer.register_forward_hook(hook_fn)
# 前向传播
model.eval()
with torch.no_grad():
_ = model(image.unsqueeze(0))
# 移除hook
handle.remove()
# 获取特征图
feature_map = features['feature_map'].squeeze(0) # 移除batch维度
n_features = feature_map.shape[0]
# 计算网格大小
n_cols = 8
n_rows = (n_features + n_cols - 1) // n_cols
fig, axes = plt.subplots(n_rows, n_cols, figsize=figsize)
if n_rows == 1:
axes = [axes]
axes = np.array(axes).ravel()
for i in range(n_features):
feature = feature_map[i].cpu().numpy()
# 标准化到[0,1]
feature = (feature - feature.min()) / (feature.max() - feature.min() + 1e-8)
axes[i].imshow(feature, cmap='viridis')
axes[i].set_title(f'Feature {i+1}')
axes[i].axis('off')
# 隐藏多余的子图
for i in range(n_features, len(axes)):
axes[i].axis('off')
plt.suptitle(f'特征图可视化 - {layer_name}', fontsize=16, fontweight='bold')
plt.tight_layout()
if save_path:
plt.savefig(save_path, dpi=300, bbox_inches='tight')
print(f"特征图已保存: {save_path}")
return fig
def plot_attention_weights(attention_weights: np.ndarray, tokens: List[str] = None,
save_path: str = None, figsize: Tuple[int, int] = (12, 10)):
"""
可视化注意力权重(适用于Vision Transformer)
Args:
attention_weights: 注意力权重矩阵
tokens: token标签
save_path: 保存路径
figsize: 图像大小
"""
plt.figure(figsize=figsize)
if tokens is None:
tokens = [f'Token {i+1}' for i in range(attention_weights.shape[0])]
# 创建热力图
sns.heatmap(attention_weights,
xticklabels=tokens, yticklabels=tokens,
cmap='Blues', annot=False, square=True,
cbar_kws={'label': 'Attention Weight'})
plt.title('注意力权重可视化', fontsize=16, fontweight='bold')
plt.xlabel('Key Tokens')
plt.ylabel('Query Tokens')
plt.tight_layout()
if save_path:
plt.savefig(save_path, dpi=300, bbox_inches='tight')
print(f"注意力权重图已保存: {save_path}")
return plt.gcf()
def create_prediction_gallery(images: List[str], predictions: List[Dict],
true_labels: List[str] = None,
save_path: str = None,
images_per_row: int = 4,
figsize: Tuple[int, int] = (20, 15)):
"""
创建预测结果画廊
Args:
images: 图像路径列表
predictions: 预测结果列表
true_labels: 真实标签列表
save_path: 保存路径
images_per_row: 每行图像数
figsize: 图像大小
"""
n_images = len(images)
n_rows = (n_images + images_per_row - 1) // images_per_row
fig, axes = plt.subplots(n_rows, images_per_row, figsize=figsize)
if n_rows == 1:
axes = [axes]
axes = np.array(axes).ravel()
for i, (img_path, pred) in enumerate(zip(images, predictions)):
if i >= len(axes):
break
# 读取并显示图像
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
axes[i].imshow(img)
# 创建标题
title = f"预测: {pred['predicted_label']}\n"
title += f"置信度: {pred['confidence']:.3f}"
if true_labels and i < len(true_labels):
title = f"真实: {true_labels[i]}\n" + title
# 如果预测错误,用红色标题
if pred['predicted_label'] != true_labels[i]:
axes[i].set_title(title, color='red', fontweight='bold')
else:
axes[i].set_title(title, color='green', fontweight='bold')
else:
axes[i].set_title(title, fontweight='bold')
axes[i].axis('off')
# 隐藏多余的子图
for i in range(len(images), len(axes)):
axes[i].axis('off')
plt.suptitle('预测结果画廊', fontsize=16, fontweight='bold')
plt.tight_layout()
if save_path:
plt.savefig(save_path, dpi=300, bbox_inches='tight')
print(f"预测画廊已保存: {save_path}")
return fig
if __name__ == "__main__":
# 测试可视化功能
# 模拟训练历史数据
epochs = 50
train_history = {
'train_loss': [1.5 * np.exp(-0.1 * i) + 0.1 + 0.05 * np.random.randn() for i in range(epochs)],
'val_loss': [1.6 * np.exp(-0.08 * i) + 0.15 + 0.08 * np.random.randn() for i in range(epochs)],
'train_acc': [60 * (1 - np.exp(-0.1 * i)) + 10 * np.random.randn() for i in range(epochs)],
'val_acc': [55 * (1 - np.exp(-0.08 * i)) + 12 * np.random.randn() for i in range(epochs)],
'lr': [0.001 * (0.9 ** (i // 10)) for i in range(epochs)]
}
# 绘制训练曲线
fig = plot_training_curves(train_history, 'test_training_curves.png')
plt.close()
# 创建交互式仪表板
interactive_fig = create_interactive_training_dashboard(train_history, 'test_dashboard.html')
print("可视化测试完成!")
|