File size: 18,848 Bytes
04103fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
"""
可视化工具模块
包含训练过程可视化、模型解释性可视化等
"""

import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import cv2
from PIL import Image
import torch
import torch.nn.functional as F
from typing import List, Tuple, Dict, Optional, Union
import pandas as pd
from matplotlib.animation import FuncAnimation
import warnings
warnings.filterwarnings('ignore')

# 设置matplotlib中文字体
plt.rcParams['font.sans-serif'] = ['SimHei', 'DejaVu Sans']
plt.rcParams['axes.unicode_minus'] = False


def plot_training_curves(train_history: Dict, save_path: str = None, 
                        figsize: Tuple[int, int] = (15, 10)):
    """
    绘制训练曲线
    
    Args:
        train_history: 训练历史字典
        save_path: 保存路径
        figsize: 图像大小
    """
    fig, axes = plt.subplots(2, 2, figsize=figsize)
    
    epochs = range(1, len(train_history['train_loss']) + 1)
    
    # 损失曲线
    axes[0, 0].plot(epochs, train_history['train_loss'], 'b-', label='训练损失', linewidth=2)
    axes[0, 0].plot(epochs, train_history['val_loss'], 'r-', label='验证损失', linewidth=2)
    axes[0, 0].set_title('损失曲线', fontsize=14, fontweight='bold')
    axes[0, 0].set_xlabel('Epoch')
    axes[0, 0].set_ylabel('Loss')
    axes[0, 0].legend()
    axes[0, 0].grid(True, alpha=0.3)
    
    # 准确率曲线
    axes[0, 1].plot(epochs, train_history['train_acc'], 'b-', label='训练准确率', linewidth=2)
    axes[0, 1].plot(epochs, train_history['val_acc'], 'r-', label='验证准确率', linewidth=2)
    axes[0, 1].set_title('准确率曲线', fontsize=14, fontweight='bold')
    axes[0, 1].set_xlabel('Epoch')
    axes[0, 1].set_ylabel('Accuracy (%)')
    axes[0, 1].legend()
    axes[0, 1].grid(True, alpha=0.3)
    
    # 学习率曲线
    if 'lr' in train_history:
        axes[1, 0].plot(epochs, train_history['lr'], 'g-', linewidth=2)
        axes[1, 0].set_title('学习率变化', fontsize=14, fontweight='bold')
        axes[1, 0].set_xlabel('Epoch')
        axes[1, 0].set_ylabel('Learning Rate')
        axes[1, 0].set_yscale('log')
        axes[1, 0].grid(True, alpha=0.3)
    
    # 训练摘要
    best_val_acc = max(train_history['val_acc'])
    best_epoch = train_history['val_acc'].index(best_val_acc) + 1
    final_train_loss = train_history['train_loss'][-1]
    final_val_loss = train_history['val_loss'][-1]
    
    summary_text = f"""训练摘要:
    
最佳验证准确率: {best_val_acc:.2f}%
最佳epoch: {best_epoch}
最终训练损失: {final_train_loss:.4f}
最终验证损失: {final_val_loss:.4f}
总训练轮数: {len(epochs)}
    """
    
    axes[1, 1].text(0.1, 0.9, summary_text, transform=axes[1, 1].transAxes, 
                    fontsize=12, verticalalignment='top',
                    bbox=dict(boxstyle='round', facecolor='lightblue', alpha=0.8))
    axes[1, 1].set_xlim(0, 1)
    axes[1, 1].set_ylim(0, 1)
    axes[1, 1].axis('off')
    
    plt.tight_layout()
    
    if save_path:
        plt.savefig(save_path, dpi=300, bbox_inches='tight')
        print(f"训练曲线已保存: {save_path}")
    
    return fig


def plot_class_distribution(data_dir: str, class_names: List[str] = None,
                           save_path: str = None, figsize: Tuple[int, int] = (12, 8)):
    """
    绘制数据集类别分布
    
    Args:
        data_dir: 数据目录
        class_names: 类别名称
        save_path: 保存路径
        figsize: 图像大小
    """
    import os
    
    class_counts = {}
    
    # 统计各类别样本数
    for class_idx, class_folder in enumerate(os.listdir(data_dir)):
        class_path = os.path.join(data_dir, class_folder)
        if os.path.isdir(class_path):
            count = len([f for f in os.listdir(class_path) 
                        if f.lower().endswith(('.png', '.jpg', '.jpeg'))])
            
            if class_names and class_idx < len(class_names):
                class_name = class_names[class_idx]
            else:
                class_name = class_folder
            
            class_counts[class_name] = count
    
    # 绘制条形图
    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=figsize)
    
    # 条形图
    classes = list(class_counts.keys())
    counts = list(class_counts.values())
    colors = plt.cm.Set3(np.linspace(0, 1, len(classes)))
    
    bars = ax1.bar(classes, counts, color=colors, edgecolor='black', linewidth=1)
    ax1.set_title('类别样本分布', fontsize=14, fontweight='bold')
    ax1.set_xlabel('类别')
    ax1.set_ylabel('样本数量')
    ax1.tick_params(axis='x', rotation=45)
    
    # 添加数值标签
    for bar, count in zip(bars, counts):
        ax1.text(bar.get_x() + bar.get_width()/2, bar.get_height() + max(counts)*0.01,
                str(count), ha='center', va='bottom', fontweight='bold')
    
    # 饼图
    ax2.pie(counts, labels=classes, autopct='%1.1f%%', colors=colors,
           startangle=90, wedgeprops={'edgecolor': 'black'})
    ax2.set_title('类别比例分布', fontsize=14, fontweight='bold')
    
    plt.tight_layout()
    
    if save_path:
        plt.savefig(save_path, dpi=300, bbox_inches='tight')
        print(f"类别分布图已保存: {save_path}")
    
    return fig, class_counts


def plot_sample_images(data_dir: str, class_names: List[str], 
                      samples_per_class: int = 3,
                      save_path: str = None, figsize: Tuple[int, int] = (15, 10)):
    """
    显示每个类别的样本图像
    
    Args:
        data_dir: 数据目录
        class_names: 类别名称
        samples_per_class: 每类显示的样本数
        save_path: 保存路径
        figsize: 图像大小
    """
    import os
    import random
    
    n_classes = len(class_names)
    fig, axes = plt.subplots(n_classes, samples_per_class, figsize=figsize)
    
    if n_classes == 1:
        axes = [axes]
    
    for class_idx, class_name in enumerate(class_names):
        class_dir = os.path.join(data_dir, class_name)
        if not os.path.exists(class_dir):
            # 尝试用索引查找目录
            class_dirs = [d for d in os.listdir(data_dir) if os.path.isdir(os.path.join(data_dir, d))]
            if class_idx < len(class_dirs):
                class_dir = os.path.join(data_dir, class_dirs[class_idx])
        
        if os.path.exists(class_dir):
            # 获取图像文件
            image_files = [f for f in os.listdir(class_dir) 
                          if f.lower().endswith(('.png', '.jpg', '.jpeg'))]
            
            # 随机选择样本
            selected_files = random.sample(image_files, 
                                         min(samples_per_class, len(image_files)))
            
            for sample_idx, img_file in enumerate(selected_files):
                img_path = os.path.join(class_dir, img_file)
                img = cv2.imread(img_path)
                img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
                
                if samples_per_class == 1:
                    ax = axes[class_idx]
                else:
                    ax = axes[class_idx, sample_idx]
                
                ax.imshow(img)
                ax.axis('off')
                
                if sample_idx == 0:
                    ax.set_ylabel(class_name, fontsize=12, fontweight='bold')
            
            # 填充空白位置
            for sample_idx in range(len(selected_files), samples_per_class):
                if samples_per_class == 1:
                    ax = axes[class_idx]
                else:
                    ax = axes[class_idx, sample_idx]
                ax.axis('off')
    
    plt.suptitle('各类别样本展示', fontsize=16, fontweight='bold')
    plt.tight_layout()
    
    if save_path:
        plt.savefig(save_path, dpi=300, bbox_inches='tight')
        print(f"样本图像已保存: {save_path}")
    
    return fig


def plot_model_comparison(results: List[Dict], save_path: str = None,
                         figsize: Tuple[int, int] = (15, 10)):
    """
    比较不同模型的性能
    
    Args:
        results: 模型结果列表,每个元素包含模型名称和指标
        save_path: 保存路径
        figsize: 图像大小
    """
    metrics_to_plot = ['accuracy', 'macro_f1', 'macro_precision', 'macro_recall']
    model_names = [r['model_name'] for r in results]
    
    fig, axes = plt.subplots(2, 2, figsize=figsize)
    axes = axes.ravel()
    
    for idx, metric in enumerate(metrics_to_plot):
        values = [r['metrics'].get(metric, 0) for r in results]
        colors = plt.cm.Set2(np.linspace(0, 1, len(model_names)))
        
        bars = axes[idx].bar(model_names, values, color=colors, 
                           edgecolor='black', linewidth=1)
        
        axes[idx].set_title(f'{metric.replace("_", " ").title()}', 
                          fontsize=12, fontweight='bold')
        axes[idx].set_ylabel('Score')
        axes[idx].tick_params(axis='x', rotation=45)
        axes[idx].grid(True, alpha=0.3)
        
        # 添加数值标签
        for bar, value in zip(bars, values):
            axes[idx].text(bar.get_x() + bar.get_width()/2, 
                         bar.get_height() + max(values)*0.01,
                         f'{value:.3f}', ha='center', va='bottom', fontweight='bold')
    
    plt.tight_layout()
    
    if save_path:
        plt.savefig(save_path, dpi=300, bbox_inches='tight')
        print(f"模型比较图已保存: {save_path}")
    
    return fig


def create_interactive_training_dashboard(train_history: Dict, save_path: str = None):
    """
    创建交互式训练仪表板
    
    Args:
        train_history: 训练历史
        save_path: 保存路径(HTML文件)
    """
    # 惰性导入 plotly,未安装则给出提示
    try:
        import plotly.graph_objects as go
        from plotly.subplots import make_subplots
    except Exception as exc:
        raise ImportError(
            "使用 create_interactive_training_dashboard 需要安装 plotly,请运行: pip install plotly"
        ) from exc

    epochs = list(range(1, len(train_history['train_loss']) + 1))
    
    # 创建子图
    fig = make_subplots(
        rows=2, cols=2,
        subplot_titles=('损失曲线', '准确率曲线', '学习率变化', '训练摘要'),
        specs=[[{"secondary_y": False}, {"secondary_y": False}],
               [{"secondary_y": False}, {"type": "table"}]]
    )
    
    # 损失曲线
    fig.add_trace(
        go.Scatter(x=epochs, y=train_history['train_loss'], 
                  name='训练损失', line=dict(color='blue')),
        row=1, col=1
    )
    fig.add_trace(
        go.Scatter(x=epochs, y=train_history['val_loss'], 
                  name='验证损失', line=dict(color='red')),
        row=1, col=1
    )
    
    # 准确率曲线
    fig.add_trace(
        go.Scatter(x=epochs, y=train_history['train_acc'], 
                  name='训练准确率', line=dict(color='blue')),
        row=1, col=2
    )
    fig.add_trace(
        go.Scatter(x=epochs, y=train_history['val_acc'], 
                  name='验证准确率', line=dict(color='red')),
        row=1, col=2
    )
    
    # 学习率变化
    if 'lr' in train_history:
        fig.add_trace(
            go.Scatter(x=epochs, y=train_history['lr'], 
                      name='学习率', line=dict(color='green')),
            row=2, col=1
        )
        fig.update_yaxes(type="log", row=2, col=1)
    
    # 训练摘要表格
    best_val_acc = max(train_history['val_acc'])
    best_epoch = train_history['val_acc'].index(best_val_acc) + 1
    
    summary_data = [
        ['指标', '数值'],
        ['最佳验证准确率', f'{best_val_acc:.2f}%'],
        ['最佳Epoch', str(best_epoch)],
        ['最终训练损失', f'{train_history["train_loss"][-1]:.4f}'],
        ['最终验证损失', f'{train_history["val_loss"][-1]:.4f}'],
        ['总训练轮数', str(len(epochs))]
    ]
    
    fig.add_trace(
        go.Table(
            header=dict(values=summary_data[0], fill_color='lightblue'),
            cells=dict(values=list(zip(*summary_data[1:])), fill_color='white')
        ),
        row=2, col=2
    )
    
    # 更新布局
    fig.update_layout(
        title='训练过程可视化仪表板',
        height=800,
        showlegend=False
    )
    
    if save_path:
        fig.write_html(save_path)
        print(f"交互式仪表板已保存: {save_path}")
    
    return fig


def visualize_feature_maps(model: torch.nn.Module, image: torch.Tensor, 
                          layer_name: str, save_path: str = None,
                          figsize: Tuple[int, int] = (20, 15)):
    """
    可视化特征图
    
    Args:
        model: PyTorch模型
        image: 输入图像tensor
        layer_name: 要可视化的层名称
        save_path: 保存路径
        figsize: 图像大小
    """
    # 注册hook获取特征图
    features = {}
    
    def hook_fn(module, input, output):
        features['feature_map'] = output
    
    # 找到目标层并注册hook
    target_layer = None
    for name, module in model.named_modules():
        if layer_name in name:
            target_layer = module
            break
    
    if target_layer is None:
        print(f"未找到层: {layer_name}")
        return None
    
    handle = target_layer.register_forward_hook(hook_fn)
    
    # 前向传播
    model.eval()
    with torch.no_grad():
        _ = model(image.unsqueeze(0))
    
    # 移除hook
    handle.remove()
    
    # 获取特征图
    feature_map = features['feature_map'].squeeze(0)  # 移除batch维度
    n_features = feature_map.shape[0]
    
    # 计算网格大小
    n_cols = 8
    n_rows = (n_features + n_cols - 1) // n_cols
    
    fig, axes = plt.subplots(n_rows, n_cols, figsize=figsize)
    if n_rows == 1:
        axes = [axes]
    axes = np.array(axes).ravel()
    
    for i in range(n_features):
        feature = feature_map[i].cpu().numpy()
        
        # 标准化到[0,1]
        feature = (feature - feature.min()) / (feature.max() - feature.min() + 1e-8)
        
        axes[i].imshow(feature, cmap='viridis')
        axes[i].set_title(f'Feature {i+1}')
        axes[i].axis('off')
    
    # 隐藏多余的子图
    for i in range(n_features, len(axes)):
        axes[i].axis('off')
    
    plt.suptitle(f'特征图可视化 - {layer_name}', fontsize=16, fontweight='bold')
    plt.tight_layout()
    
    if save_path:
        plt.savefig(save_path, dpi=300, bbox_inches='tight')
        print(f"特征图已保存: {save_path}")
    
    return fig


def plot_attention_weights(attention_weights: np.ndarray, tokens: List[str] = None,
                          save_path: str = None, figsize: Tuple[int, int] = (12, 10)):
    """
    可视化注意力权重(适用于Vision Transformer)
    
    Args:
        attention_weights: 注意力权重矩阵
        tokens: token标签
        save_path: 保存路径
        figsize: 图像大小
    """
    plt.figure(figsize=figsize)
    
    if tokens is None:
        tokens = [f'Token {i+1}' for i in range(attention_weights.shape[0])]
    
    # 创建热力图
    sns.heatmap(attention_weights, 
                xticklabels=tokens, yticklabels=tokens,
                cmap='Blues', annot=False, square=True,
                cbar_kws={'label': 'Attention Weight'})
    
    plt.title('注意力权重可视化', fontsize=16, fontweight='bold')
    plt.xlabel('Key Tokens')
    plt.ylabel('Query Tokens')
    plt.tight_layout()
    
    if save_path:
        plt.savefig(save_path, dpi=300, bbox_inches='tight')
        print(f"注意力权重图已保存: {save_path}")
    
    return plt.gcf()


def create_prediction_gallery(images: List[str], predictions: List[Dict],
                             true_labels: List[str] = None, 
                             save_path: str = None,
                             images_per_row: int = 4,
                             figsize: Tuple[int, int] = (20, 15)):
    """
    创建预测结果画廊
    
    Args:
        images: 图像路径列表
        predictions: 预测结果列表
        true_labels: 真实标签列表
        save_path: 保存路径
        images_per_row: 每行图像数
        figsize: 图像大小
    """
    n_images = len(images)
    n_rows = (n_images + images_per_row - 1) // images_per_row
    
    fig, axes = plt.subplots(n_rows, images_per_row, figsize=figsize)
    if n_rows == 1:
        axes = [axes]
    axes = np.array(axes).ravel()
    
    for i, (img_path, pred) in enumerate(zip(images, predictions)):
        if i >= len(axes):
            break
            
        # 读取并显示图像
        img = cv2.imread(img_path)
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        axes[i].imshow(img)
        
        # 创建标题
        title = f"预测: {pred['predicted_label']}\n"
        title += f"置信度: {pred['confidence']:.3f}"
        
        if true_labels and i < len(true_labels):
            title = f"真实: {true_labels[i]}\n" + title
            # 如果预测错误,用红色标题
            if pred['predicted_label'] != true_labels[i]:
                axes[i].set_title(title, color='red', fontweight='bold')
            else:
                axes[i].set_title(title, color='green', fontweight='bold')
        else:
            axes[i].set_title(title, fontweight='bold')
        
        axes[i].axis('off')
    
    # 隐藏多余的子图
    for i in range(len(images), len(axes)):
        axes[i].axis('off')
    
    plt.suptitle('预测结果画廊', fontsize=16, fontweight='bold')
    plt.tight_layout()
    
    if save_path:
        plt.savefig(save_path, dpi=300, bbox_inches='tight')
        print(f"预测画廊已保存: {save_path}")
    
    return fig


if __name__ == "__main__":
    # 测试可视化功能
    
    # 模拟训练历史数据
    epochs = 50
    train_history = {
        'train_loss': [1.5 * np.exp(-0.1 * i) + 0.1 + 0.05 * np.random.randn() for i in range(epochs)],
        'val_loss': [1.6 * np.exp(-0.08 * i) + 0.15 + 0.08 * np.random.randn() for i in range(epochs)],
        'train_acc': [60 * (1 - np.exp(-0.1 * i)) + 10 * np.random.randn() for i in range(epochs)],
        'val_acc': [55 * (1 - np.exp(-0.08 * i)) + 12 * np.random.randn() for i in range(epochs)],
        'lr': [0.001 * (0.9 ** (i // 10)) for i in range(epochs)]
    }
    
    # 绘制训练曲线
    fig = plot_training_curves(train_history, 'test_training_curves.png')
    plt.close()
    
    # 创建交互式仪表板
    interactive_fig = create_interactive_training_dashboard(train_history, 'test_dashboard.html')
    
    print("可视化测试完成!")