Spaces:
Sleeping
Sleeping
from .efficientnet import EfficientNetClassifier | |
from .resnet import ResNetClassifier | |
from .vit import VisionTransformerClassifier | |
from .mobilenetv3 import MobileNetV3SmallClassifier | |
from .shufflenetv2 import ShuffleNetV2Classifier | |
import torch | |
import torch.nn as nn | |
def create_model(config: dict) -> nn.Module: | |
"""根据配置创建模型实例。""" | |
model_config = config['model'] | |
model_name = model_config['name'] | |
num_classes = model_config['num_classes'] | |
pretrained = model_config.get('pretrained', True) | |
dropout = model_config.get('dropout', 0.2) | |
model_name_lower = model_name.lower() | |
if 'efficientnet' in model_name_lower: | |
return EfficientNetClassifier(model_name, num_classes, pretrained, dropout) | |
if 'resnet' in model_name_lower: | |
return ResNetClassifier(model_name, num_classes, pretrained, dropout) | |
if 'vit' in model_name_lower: | |
return VisionTransformerClassifier(model_name, num_classes, pretrained, dropout) | |
if 'mobilenetv3' in model_name_lower: | |
return MobileNetV3SmallClassifier(num_classes=num_classes, pretrained=pretrained, dropout=dropout) | |
if 'shufflenetv2' in model_name_lower: | |
return ShuffleNetV2Classifier(num_classes=num_classes, pretrained=pretrained, dropout=dropout) | |
raise ValueError(f'不支持的模型类型: {model_name}') | |
def count_parameters(model: nn.Module) -> int: | |
"""计算可训练参数数量。""" | |
return sum(parameter.numel() for parameter in model.parameters() if parameter.requires_grad) | |
def model_size_mb(model: nn.Module) -> float: | |
"""估算模型参数与缓冲区占用的内存大小(MB)。""" | |
param_size = 0 | |
buffer_size = 0 | |
for parameter in model.parameters(): | |
param_size += parameter.nelement() * parameter.element_size() | |
for buffer in model.buffers(): | |
buffer_size += buffer.nelement() * buffer.element_size() | |
return (param_size + buffer_size) / 1024 / 1024 | |