Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
from timm import create_model | |
class EfficientNetClassifier(nn.Module): | |
def __init__(self, model_name='efficientnet_b0', num_classes=5, pretrained=True, dropout=0.2): | |
super().__init__() | |
self.backbone = create_model(model_name, pretrained=pretrained, num_classes=0, global_pool='avg') | |
with torch.no_grad(): | |
dummy = torch.randn(1, 3, 224, 224) | |
self.feature_dim = self.backbone(dummy).shape[1] | |
# DR分级头 | |
self.classifier_grading = nn.Sequential( | |
nn.Dropout(dropout), | |
nn.Linear(self.feature_dim, 512), | |
nn.ReLU(inplace=True), | |
nn.Dropout(dropout * 0.5), | |
nn.Linear(512, num_classes) | |
) | |
# 二分类头 | |
self.classifier_diabetic = nn.Sequential( | |
nn.Dropout(dropout), | |
nn.Linear(self.feature_dim, 128), | |
nn.ReLU(inplace=True), | |
nn.Dropout(dropout * 0.5), | |
nn.Linear(128, 1) | |
) | |
self._initialize_weights() | |
def _initialize_weights(self): | |
for m in list(self.classifier_grading) + list(self.classifier_diabetic): | |
if isinstance(m, nn.Linear): | |
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | |
nn.init.constant_(m.bias, 0) | |
def forward(self, x): | |
features = self.backbone(x) | |
out_grading = self.classifier_grading(features) | |
out_diabetic = self.classifier_diabetic(features).squeeze(-1) # shape: (B,) | |
# 返回dict,兼容旧用法 | |
return {'grading': out_grading, 'diabetic': out_diabetic} | |
def get_features(self, x): | |
return self.backbone(x) | |