import torch import torch.nn as nn import torchvision.models as models class ResNetClassifier(nn.Module): def __init__(self, model_name='resnet18', num_classes=5, pretrained=True, dropout=0.2): super().__init__() if model_name == 'resnet18': self.backbone = models.resnet18(pretrained=pretrained) self.feature_dim = 512 elif model_name == 'resnet34': self.backbone = models.resnet34(pretrained=pretrained) self.feature_dim = 512 elif model_name == 'resnet50': self.backbone = models.resnet50(pretrained=pretrained) self.feature_dim = 2048 else: raise ValueError(f'不支持的ResNet模型: {model_name}') self.backbone = nn.Sequential(*list(self.backbone.children())[:-1]) self.classifier = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Flatten(), nn.Dropout(dropout), nn.Linear(self.feature_dim, 512), nn.ReLU(inplace=True), nn.Dropout(dropout * 0.5), nn.Linear(512, num_classes) ) self._initialize_weights() def _initialize_weights(self): for m in self.classifier: if isinstance(m, nn.Linear): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') nn.init.constant_(m.bias, 0) def forward(self, x): features = self.backbone(x) return self.classifier(features) def get_features(self, x): features = self.backbone(x) return features.view(features.size(0), -1)