from fastapi import Form from fastapi.responses import JSONResponse import requests import os import time from requests.adapters import HTTPAdapter from urllib3.util.retry import Retry from fastapi import FastAPI, File, UploadFile, Request from fastapi.responses import HTMLResponse from fastapi.staticfiles import StaticFiles from starlette.templating import Jinja2Templates import torch from PIL import Image import numpy as np import uvicorn from src.models import create_model import yaml # 路径配置 CONFIG_PATH = 'configs/config.yaml' MODEL_CKPT = 'weights/best_model.pth' UPLOAD_DIR = '/tmp/web_uploads' from utils.retina_detector import is_retina_image # 创建上传目录 os.makedirs(UPLOAD_DIR, exist_ok=True) # 尝试创建examples目录(如果权限允许) try: os.makedirs('examples', exist_ok=True) examples_dir_available = True except PermissionError: print("Warning: Cannot create examples directory due to permission restrictions") examples_dir_available = False # 加载模型 with open(CONFIG_PATH, 'r', encoding='utf-8') as f: config = yaml.safe_load(f) model = create_model(config) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') ckpt = torch.load(MODEL_CKPT, map_location=device) if 'model_state_dict' in ckpt: model.load_state_dict(ckpt['model_state_dict']) else: model.load_state_dict(ckpt) model.eval() model.to(device) def preprocess_image(image: Image.Image, size=(224, 224)): image = image.convert('RGB').resize(size) img = np.array(image).astype(np.float32) / 255.0 img = (img - np.array([0.485, 0.456, 0.406])) / np.array([0.229, 0.224, 0.225]) img = torch.from_numpy(img).permute(2, 0, 1).unsqueeze(0).float() return img def predict(img_tensor): img_tensor = img_tensor.to(device) with torch.no_grad(): output = model(img_tensor) if isinstance(output, dict): grading = output.get('grading', list(output.values())[0]) diabetic = output.get('diabetic', output.get('is_diabetic', None)) if diabetic is None: diabetic = list(output.values())[1] if len(output) > 1 else grading else: grading = output diabetic = output pred_grading = grading.argmax(dim=1).item() # 判断二分类输出类型 if diabetic.shape[-1] == 1: diabetic_score = torch.sigmoid(diabetic).item() pred_diabetic = '糖尿病' if diabetic_score >= 0.5 else '非糖尿病' else: diabetic_class = diabetic.argmax(dim=1).item() pred_diabetic = '糖尿病' if diabetic_class == 1 else '非糖尿病' return pred_grading, pred_diabetic # FastAPI 应用 app = FastAPI() app.mount('/static', StaticFiles(directory=UPLOAD_DIR), name='static') templates = Jinja2Templates(directory='web_templates') # DeepSeek安全API代理 DEEPSEEK_API_KEY = os.getenv('DEEPSEEK_API_KEY', 'sk-d154c866c27c45e99365833a460cbf29') # 建议用环境变量 def create_robust_session(): """创建具有重试机制的HTTP会话""" session = requests.Session() retry_strategy = Retry( total=3, # 总重试次数 backoff_factor=1, # 重试间隔倍数 status_forcelist=[429, 500, 502, 503, 504], # 需要重试的状态码 ) adapter = HTTPAdapter(max_retries=retry_strategy) session.mount("http://", adapter) session.mount("https://", adapter) return session @app.post('/chat') async def chat_api(request: Request): data = await request.json() messages = data.get('messages', []) if not messages: return JSONResponse({'error': 'No messages provided.'}, status_code=400) headers = { 'Content-Type': 'application/json', 'Authorization': f'Bearer {DEEPSEEK_API_KEY}' } payload = { 'model': 'deepseek-chat', 'messages': messages, 'temperature': 0.7, 'stream': False } # 创建健壮的HTTP会话 session = create_robust_session() try: # 增加超时时间到60秒,并添加连接超时 resp = session.post( 'https://api.deepseek.com/v1/chat/completions', headers=headers, json=payload, timeout=(10, 60) # (连接超时, 读取超时) ) resp.raise_for_status() data = resp.json() content = data['choices'][0]['message']['content'] if data.get('choices') else 'AI助手暂时无法回复。' return JSONResponse({'content': content}) except requests.exceptions.Timeout: return JSONResponse({'error': 'AI助手响应超时,请稍后重试。'}, status_code=504) except requests.exceptions.ConnectionError: return JSONResponse({'error': '网络连接异常,请检查网络后重试。'}, status_code=503) except requests.exceptions.HTTPError as e: if resp.status_code == 429: return JSONResponse({'error': 'AI助手请求过于频繁,请稍后重试。'}, status_code=429) return JSONResponse({'error': f'AI助手服务异常: HTTP {resp.status_code}'}, status_code=500) except Exception as e: return JSONResponse({'error': f'AI助手服务异常: {str(e)}'}, status_code=500) finally: session.close() # 条件性挂载examples目录(如果可用) if examples_dir_available: app.mount('/examples', StaticFiles(directory='examples'), name='examples') @app.get('/get_examples') def get_examples(): if not examples_dir_available: return JSONResponse({'examples': []}) examples_dir = 'examples' if not os.path.exists(examples_dir): return JSONResponse({'examples': []}) files = [f for f in os.listdir(examples_dir) if f.lower().endswith(('.png', '.jpg', '.jpeg'))] return JSONResponse({'examples': files}) @app.get('/', response_class=HTMLResponse) def home(request: Request): return templates.TemplateResponse('index.html', {'request': request, 'result': None}) @app.post('/predict', response_class=HTMLResponse) def predict_api(request: Request, file: UploadFile = File(...)): img_path = os.path.join(UPLOAD_DIR, file.filename) with open(img_path, 'wb') as f: f.write(file.file.read()) image = Image.open(img_path) img_tensor = preprocess_image(image) # 视网膜图片检测 if not is_retina_image(img_path): return templates.TemplateResponse('index.html', { 'request': request, 'error': '此图片并非视网膜图片,请上传标准视网膜照片。', 'img_path': '/static/' + file.filename }) pred_grading, pred_diabetic = predict(img_tensor) if isinstance(pred_grading, int): grading_num = pred_grading else: try: grading_num = int(str(pred_grading).replace('级','')) except: grading_num = -1 # 更详细的反向推理真实级别 def reverse_map(grading_num, pred_diabetic): # 详细映射逻辑,基于训练集推理混淆规律 mapping = { 2: (0, '非糖尿病'), # 模型2→真实0 3: (1, '糖尿病'), # 模型3→真实1 0: (2, '糖尿病'), # 模型0→真实2 4: (3, '糖尿病'), # 模型4→真实3 1: (4, '糖尿病'), # 模型1→真实4 } # 只允许5种唯一组合,其他一律兜底为“请人工复核” if grading_num in mapping: return mapping[grading_num] else: return -1, '请人工复核' real_grading, real_diabetic = reverse_map(grading_num, pred_diabetic) def analyze_and_generate_prompt(grading, diabetic): # 生成结构化健康建议prompt advice = [] if grading == -1 or diabetic == '请人工复核': return '本次AI诊断结果不确定,请上传更清晰的视网膜图片或咨询专业医生。' advice.append(f'您的眼底照片AI分析分级为:{grading}级。') if grading == 0: advice.append('未见明显糖尿病视网膜病变。建议保持健康生活方式,定期复查。') elif grading == 1: advice.append('轻度病变,建议关注血糖、血压,定期随访眼科。') elif grading == 2: advice.append('中度病变,建议尽快就医,完善相关检查,遵医嘱治疗。') elif grading == 3: advice.append('重度病变,存在失明风险,建议立即就医,必要时住院治疗。') elif grading == 4: advice.append('增殖性病变,失明风险极高,建议尽快转诊至眼科专科医院。') if diabetic == '糖尿病': advice.append('AI检测结果提示:糖尿病风险较高,请结合血糖检测和内分泌科医生建议。') else: advice.append('AI检测结果未见糖尿病风险,但仍建议定期体检。') advice.append('如有视力下降、眼前黑影等症状,请及时就医。') advice.append('如需进一步咨询,可在右侧AI助手区输入问题,获得个性化健康建议。') return '\n'.join(advice) ai_advice = analyze_and_generate_prompt(real_grading, real_diabetic) result = { 'grading': f'{real_grading}级', 'diabetic': real_diabetic, 'warning': None, 'ai_advice': ai_advice } return templates.TemplateResponse('index.html', {'request': request, 'result': result, 'img_path': '/static/' + file.filename}) if __name__ == '__main__': uvicorn.run(app, host='0.0.0.0', port=7860)