""" 糖尿病视网膜病变检测项目 数据处理模块 """ import os import cv2 import numpy as np import pandas as pd from PIL import Image import torch from torch.utils.data import Dataset, DataLoader from torchvision import transforms import albumentations as A from albumentations.pytorch import ToTensorV2 from typing import Tuple, List, Optional, Dict import yaml class DiabeticRetinopathyDataset(Dataset): """糖尿病视网膜病变数据集类""" def __init__( self, data_dir: str, csv_file: Optional[str] = None, transform: Optional[A.Compose] = None, image_size: int = 224 ): """ 初始化数据集 Args: data_dir: 图像数据目录 csv_file: 标签CSV文件路径,如果为None则从文件名推断标签 transform: 数据增强变换 image_size: 图像尺寸 """ self.data_dir = data_dir self.image_size = image_size self.transform = transform if csv_file and os.path.exists(csv_file): # 从CSV文件读取标签 self.df = pd.read_csv(csv_file) # 获取类别名(需与config一致) # 尝试自动读取class_names class_names = None config_path = os.path.join(os.path.dirname(__file__), '../..', 'configs', 'config.yaml') if os.path.exists(config_path): import yaml with open(config_path, 'r', encoding='utf-8') as f: config = yaml.safe_load(f) class_names = config['data']['class_names'] if not class_names: # 兜底 class_names = ['无病变', '轻度', '中度', '重度', '增殖性病变'] # 兼容不同csv格式(prepare_data.py生成的为id_code/diagnosis/is_diabetic) if 'id_code' in self.df.columns and 'diagnosis' in self.df.columns: # 拼接: data_dir/类别名/图片id.png self.images = [os.path.join(self.data_dir, class_names[row['diagnosis']], f"{row['id_code']}.png") for _, row in self.df.iterrows()] self.labels = self.df['diagnosis'].tolist() self.is_diabetic = self.df['is_diabetic'].tolist() if 'is_diabetic' in self.df.columns else None elif 'image' in self.df.columns and 'label' in self.df.columns: # 兼容旧格式 self.images = [os.path.join(self.data_dir, class_names[row['label']], f"{row['image']}.png") for _, row in self.df.iterrows()] self.labels = self.df['label'].tolist() self.is_diabetic = self.df['is_diabetic'].tolist() if 'is_diabetic' in self.df.columns else None else: raise ValueError('CSV文件缺少 id_code/diagnosis 或 image/label 字段') else: # 从目录结构推断标签 self.images, self.labels = self._load_from_directory() self.is_diabetic = None def _load_from_directory(self) -> Tuple[List[str], List[int]]: """从目录结构加载图像和标签""" images = [] labels = [] # 假设目录结构为: data_dir/class_name/image.jpg for class_idx, class_name in enumerate(os.listdir(self.data_dir)): class_dir = os.path.join(self.data_dir, class_name) if os.path.isdir(class_dir): for img_file in os.listdir(class_dir): if img_file.lower().endswith(('.png', '.jpg', '.jpeg')): images.append(os.path.join(class_dir, img_file)) labels.append(class_idx) return images, labels def __len__(self) -> int: return len(self.images) def __getitem__(self, idx: int): """获取单个样本,支持多任务输出。自动尝试多种图片后缀,跳过无法读取的图片。""" import warnings img_path = self.images[idx] label = self.labels[idx] is_diabetic = self.is_diabetic[idx] if self.is_diabetic is not None else None # 自动尝试多种图片后缀 if not os.path.exists(img_path): base, ext = os.path.splitext(img_path) tried = [img_path] for suf in ['.png', '.jpg', '.jpeg', '.JPG', '.PNG', '.JPEG']: alt_path = base + suf if os.path.exists(alt_path): img_path = alt_path break tried.append(alt_path) image = cv2.imread(img_path) if image is None: warnings.warn(f"跳过无法读取图像: {img_path}") # 返回None,DataLoader需配合collate_fn过滤 return None # 转换BGR到RGB image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # 预处理:裁剪和调整大小 image = self._preprocess_image(image) # 应用数据增强 if self.transform: augmented = self.transform(image=image) image = augmented['image'] else: # 默认变换 transform = A.Compose([ A.Resize(self.image_size, self.image_size), A.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ), ToTensorV2() ]) augmented = transform(image=image) image = augmented['image'] # 返回多任务标签(image, label, is_diabetic),兼容旧用法 if is_diabetic is not None: return image, label, is_diabetic else: return image, label def _preprocess_image(self, image: np.ndarray) -> np.ndarray: """眼底图像预处理""" # 去除黑色边框 gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) # 找到非黑色区域 _, thresh = cv2.threshold(gray, 10, 255, cv2.THRESH_BINARY) contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if contours: # 找到最大轮廓 largest_contour = max(contours, key=cv2.contourArea) x, y, w, h = cv2.boundingRect(largest_contour) # 裁剪图像 image = image[y:y+h, x:x+w] return image def create_data_transforms(config: dict, is_training: bool = True) -> A.Compose: """创建数据变换""" image_size = config['data']['image_size'] if is_training: aug_config = config.get('augmentation', {}) transforms_list = [] # CLAHE if aug_config.get('clahe', False): transforms_list.append(A.CLAHE(clip_limit=2.0, p=0.5)) # 随机旋转 if aug_config.get('rotation', 0) > 0: transforms_list.append(A.Rotate(limit=aug_config['rotation'], p=0.5)) # 随机水平翻转 if aug_config.get('horizontal_flip', False): transforms_list.append(A.HorizontalFlip(p=0.5)) # 亮度/对比度 if aug_config.get('brightness', 0) > 0 or aug_config.get('contrast', 0) > 0: transforms_list.append(A.RandomBrightnessContrast( brightness_limit=aug_config.get('brightness', 0.15), contrast_limit=aug_config.get('contrast', 0.15), p=0.5 )) # 高斯模糊 if aug_config.get('blur', False): transforms_list.append(A.GaussianBlur(blur_limit=(3, 5), p=aug_config.get('blur_prob', 0.2))) # 其它增强可按需添加 transforms_list.append(A.Resize(image_size, image_size)) transforms_list.append(A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])) transforms_list.append(ToTensorV2()) else: transforms_list = [ A.Resize(image_size, image_size), A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ToTensorV2() ] return A.Compose(transforms_list) def create_data_loaders(config: dict) -> Tuple[DataLoader, DataLoader, Optional[DataLoader]]: """创建数据加载器""" data_config = config['data'] # 创建变换 train_transform = create_data_transforms(config, is_training=True) val_transform = create_data_transforms(config, is_training=False) # 创建数据集 train_dataset = DiabeticRetinopathyDataset( data_dir=data_config['train_dir'], transform=train_transform, image_size=data_config['image_size'] ) val_dataset = DiabeticRetinopathyDataset( data_dir=data_config['val_dir'], transform=val_transform, image_size=data_config['image_size'] ) # 创建数据加载器 train_loader = DataLoader( train_dataset, batch_size=data_config['batch_size'], shuffle=True, num_workers=data_config['num_workers'], pin_memory=True ) val_loader = DataLoader( val_dataset, batch_size=data_config['batch_size'], shuffle=False, num_workers=data_config['num_workers'], pin_memory=True ) # 测试集(可选) test_loader = None if os.path.exists(data_config.get('test_dir', '')): test_dataset = DiabeticRetinopathyDataset( data_dir=data_config['test_dir'], transform=val_transform, image_size=data_config['image_size'] ) test_loader = DataLoader( test_dataset, batch_size=data_config['batch_size'], shuffle=False, num_workers=data_config['num_workers'], pin_memory=True ) return train_loader, val_loader, test_loader def get_class_weights(data_dir: str, num_classes: int = 5) -> torch.Tensor: """计算类别权重用于处理数据不平衡""" class_counts = [0] * num_classes for class_idx, class_name in enumerate(os.listdir(data_dir)): class_dir = os.path.join(data_dir, class_name) if os.path.isdir(class_dir): count = len([f for f in os.listdir(class_dir) if f.lower().endswith(('.png', '.jpg', '.jpeg'))]) if class_idx < num_classes: class_counts[class_idx] = count # 计算权重(逆频率) total_samples = sum(class_counts) class_weights = [total_samples / (num_classes * count) if count > 0 else 0 for count in class_counts] return torch.FloatTensor(class_weights) if __name__ == "__main__": # 测试数据加载器 with open("configs/config.yaml", 'r', encoding='utf-8') as f: config = yaml.safe_load(f) try: train_loader, val_loader, test_loader = create_data_loaders(config) print(f"训练集样本数: {len(train_loader.dataset)}") print(f"验证集样本数: {len(val_loader.dataset)}") if test_loader: print(f"测试集样本数: {len(test_loader.dataset)}") # 测试一个批次 for batch_idx, (images, labels) in enumerate(train_loader): print(f"批次 {batch_idx}: 图像形状 {images.shape}, 标签形状 {labels.shape}") break except Exception as e: print(f"数据加载测试失败: {e}") print("请确保数据目录结构正确,或创建示例数据进行测试")