Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,396 Bytes
7f5e4af b488f86 7f5e4af b488f86 7f5e4af b488f86 7f5e4af b488f86 7f5e4af b488f86 7f5e4af b488f86 7f5e4af b488f86 7f5e4af b488f86 7f5e4af b488f86 7f5e4af b488f86 7f5e4af b488f86 7f5e4af b488f86 7f5e4af b488f86 7f5e4af b488f86 7f5e4af b488f86 7f5e4af b488f86 7f5e4af b488f86 7f5e4af b488f86 7f5e4af b488f86 7f5e4af b488f86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import os
import tempfile
import uuid
import torch
from PIL import Image
from torchvision import transforms
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
from osediff_sd3 import OSEDiff_SD3_TEST, SD3Euler
# -------------------------------------------------------------------
# Helper: Resize & center-crop to a fixed square
# -------------------------------------------------------------------
def resize_and_center_crop(img: Image.Image, size: int) -> Image.Image:
w, h = img.size
scale = size / min(w, h)
new_w, new_h = int(w * scale), int(h * scale)
img = img.resize((new_w, new_h), Image.LANCZOS)
left = (new_w - size) // 2
top = (new_h - size) // 2
return img.crop((left, top, left + size, top + size))
# -------------------------------------------------------------------
# Helper: Generate a single VLM prompt for recursive_multiscale
# -------------------------------------------------------------------
def _generate_vlm_prompt(
vlm_model,
vlm_processor,
process_vision_info,
prev_image_path: str,
zoomed_image_path: str,
device: str = "cuda"
) -> str:
"""
Given two image file paths:
- prev_image_path: the “full” image at the previous recursion.
- zoomed_image_path: the cropped+resized (zoom) image for this step.
This builds a single “recursive_multiscale” prompt via Qwen2.5-VL.
Returns a string like “cat on sofa, pet, indoor, living room”, etc.
"""
# (1) Define the system message for recursive_multiscale:
message_text = (
"The second image is a zoom-in of the first image. "
"Based on this knowledge, what is in the second image? "
"Give me a set of words."
)
# (2) Build the two-image “chat” payload:
messages = [
{"role": "system", "content": message_text},
{
"role": "user",
"content": [
{"type": "image", "image": prev_image_path},
{"type": "image", "image": zoomed_image_path},
],
},
]
# (3) Wrap through the VL processor to get “inputs”:
text = vlm_processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = vlm_processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
).to(device)
# (4) Generate tokens → decode
generated = vlm_model.generate(**inputs, max_new_tokens=128)
# strip off the prompt tokens from each generated sequence:
trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated)
]
out_text = vlm_processor.batch_decode(
trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
# (5) Return exactly the bare words (no extra “,” if no additional user prompt)
return out_text.strip()
# -------------------------------------------------------------------
# Main Function: recursive_multiscale_sr (with multiple centers)
# -------------------------------------------------------------------
def recursive_multiscale_sr(
input_png_path: str,
upscale: int,
rec_num: int = 4,
centers: list[tuple[float, float]] = None,
) -> tuple[list[Image.Image], list[str]]:
"""
Perform `rec_num` recursive_multiscale super-resolution steps on a single PNG.
- input_png_path: path to a single .png file on disk.
- upscale: integer up-scale factor per recursion (e.g. 4).
- rec_num: how many recursion steps to perform.
- centers: a list of normalized (x, y) tuples in [0, 1], one per recursion step,
indicating where to center the low-res crop for each step. The list
length must equal rec_num. If centers is None, defaults to center=(0.5, 0.5)
for all steps.
Returns a tuple (sr_pil_list, prompt_list), where:
- sr_pil_list: list of PIL.Image outputs [SR1, SR2, …, SR_rec_num] in order.
- prompt_list: list of the VLM prompts generated at each recursion.
"""
###############################
# 0. Validate / fill default centers
###############################
if centers is None:
# Default: use center (0.5, 0.5) for every recursion
centers = [(0.5, 0.5) for _ in range(rec_num)]
else:
if not isinstance(centers, (list, tuple)) or len(centers) != rec_num:
raise ValueError(
f"`centers` must be a list of {rec_num} (x,y) tuples, but got length {len(centers)}."
)
###############################
# 1. Fixed hyper-parameters
###############################
device = "cuda"
process_size = 512 # same as args.process_size
# model checkpoint paths (hard-coded to your example)
LORA_PATH = "ckpt/SR_LoRA/model_20001.pkl"
VAE_PATH = "ckpt/SR_VAE/vae_encoder_20001.pt"
SD3_MODEL = "stabilityai/stable-diffusion-3-medium-diffusers"
# VLM model name (hard-coded)
VLM_NAME = "Qwen/Qwen2.5-VL-3B-Instruct"
###############################
# 2. Build a dummy “args” namespace
# to satisfy OSEDiff_SD3_TEST constructor.
###############################
class _Args:
pass
args = _Args()
args.upscale = upscale
args.lora_path = LORA_PATH
args.vae_path = VAE_PATH
args.pretrained_model_name_or_path = SD3_MODEL
args.merge_and_unload_lora = False
args.lora_rank = 4
args.vae_decoder_tiled_size = 224
args.vae_encoder_tiled_size = 1024
args.latent_tiled_size = 96
args.latent_tiled_overlap = 32
args.mixed_precision = "fp16"
args.efficient_memory = False
# (other flags are not used by OSEDiff_SD3_TEST, so we skip them)
###############################
# 3. Load the SD3 SR model (non-efficient)
###############################
# 3.1 Instantiate the underlying SD3-Euler UNet/VAE/text encoders
sd3 = SD3Euler()
# move all text encoders + transformer + VAE to CUDA:
sd3.text_enc_1.to(device)
sd3.text_enc_2.to(device)
sd3.text_enc_3.to(device)
sd3.transformer.to(device, dtype=torch.float32)
sd3.vae.to(device, dtype=torch.float32)
# freeze
for p in (
sd3.text_enc_1,
sd3.text_enc_2,
sd3.text_enc_3,
sd3.transformer,
sd3.vae,
):
p.requires_grad_(False)
# 3.2 Wrap in OSEDiff_SD3_TEST helper:
model_test = OSEDiff_SD3_TEST(args, sd3)
# (by default, “model_test(...)” takes (lq_tensor, prompt=str) and returns a list[tensor])
###############################
# 4. Load the VLM (Qwen2.5-VL)
###############################
vlm_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
VLM_NAME,
torch_dtype="auto",
device_map="auto" # immediately dispatches layers onto available GPUs
)
vlm_processor = AutoProcessor.from_pretrained(VLM_NAME)
###############################
# 5. Pre-allocate a Temporary Directory
# to hold intermediate JPEG/PNG files
###############################
unique_id = uuid.uuid4().hex
prefix = f"recms_{unique_id}_"
with tempfile.TemporaryDirectory(prefix=prefix) as td:
# (we’ll write “prev.png” and “zoom.png” at each step)
###############################
# 6. Prepare the very first “full” image
###############################
# 6.1 Load + center crop → first_image is (512×512) PIL on CPU
img0 = Image.open(input_png_path).convert("RGB")
img0 = resize_and_center_crop(img0, process_size)
# 6.2 Save it once so VLM can read it as “prev.png”
prev_path = os.path.join(td, "step0_prev.png")
img0.save(prev_path)
# We will maintain lists of PIL outputs and prompts:
sr_pil_list: list[Image.Image] = []
prompt_list: list[str] = []
###############################
# 7. Recursion loop (now up to rec_num times)
###############################
for rec in range(rec_num):
# (A) Load the previous SR output (or original) and compute crop window
prev_pil = Image.open(prev_path).convert("RGB")
w, h = prev_pil.size # should be (512×512) each time
# (1) Compute the “low-res” window size:
new_w, new_h = w // upscale, h // upscale # e.g. 128×128 for upscale=4
# (2) Map normalized center → pixel center, then clamp so crop stays in bounds:
cx_norm, cy_norm = centers[rec]
cx = int(cx_norm * w)
cy = int(cy_norm * h)
half_w = new_w // 2
half_h = new_h // 2
# If center in pixels is too close to left/top, clamp so left=0 or top=0; same on right/bottom
left = cx - half_w
top = cy - half_h
# clamp left ∈ [0, w - new_w], top ∈ [0, h - new_h]
left = max(0, min(left, w - new_w))
top = max(0, min(top, h - new_h))
right = left + new_w
bottom = top + new_h
cropped = prev_pil.crop((left, top, right, bottom))
# (B) Resize that crop back up to (512×512) via BICUBIC → zoomed
zoomed = cropped.resize((w, h), Image.BICUBIC)
zoom_path = os.path.join(td, f"step{rec+1}_zoom.png")
zoomed.save(zoom_path)
# (C) Generate a recursive_multiscale VLM “tag” prompt
prompt_tag = _generate_vlm_prompt(
vlm_model=vlm_model,
vlm_processor=vlm_processor,
process_vision_info=process_vision_info,
prev_image_path=prev_path,
zoomed_image_path=zoom_path,
device=device,
)
# (By default, no extra user prompt is appended.)
# (D) Prepare the low-res tensor for SR: convert zoomed → Tensor → [0,1] → [−1,1]
to_tensor = transforms.ToTensor()
lq = to_tensor(zoomed).unsqueeze(0).to(device) # shape (1,3,512,512)
lq = (lq * 2.0) - 1.0
# (E) Do SR inference:
with torch.no_grad():
out_tensor = model_test(lq, prompt=prompt_tag)[0] # (3,512,512) on CPU or GPU
out_tensor = out_tensor.clamp(-1.0, 1.0).cpu()
# back to PIL in [0,1]:
out_pil = transforms.ToPILImage()((out_tensor * 0.5) + 0.5)
# (F) Save this step’s SR output as “prev.png” for next iteration:
out_path = os.path.join(td, f"step{rec+1}_sr.png")
out_pil.save(out_path)
prev_path = out_path
# (G) Append the PIL to our list:
sr_pil_list.append(out_pil)
prompt_list.append(prompt_tag)
# end for(rec)
###############################
# 8. Return the SR outputs & prompts
###############################
# The list sr_pil_list = [ SR1, SR2, …, SR_rec_num ] in order.
return sr_pil_list, prompt_list
|