File size: 11,396 Bytes
7f5e4af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b488f86
7f5e4af
 
 
 
 
 
 
 
 
 
 
 
 
 
b488f86
7f5e4af
 
 
 
b488f86
 
 
7f5e4af
b488f86
7f5e4af
 
b488f86
 
 
 
 
 
 
 
 
7f5e4af
b488f86
 
 
 
 
 
 
 
 
 
 
 
7f5e4af
 
 
 
 
b488f86
7f5e4af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b488f86
7f5e4af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b488f86
7f5e4af
 
 
 
 
 
 
 
 
b488f86
7f5e4af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b488f86
7f5e4af
b488f86
7f5e4af
 
b488f86
7f5e4af
 
b488f86
7f5e4af
b488f86
 
 
7f5e4af
b488f86
 
 
 
 
 
 
 
 
 
 
 
 
 
7f5e4af
 
b488f86
7f5e4af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b488f86
7f5e4af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b488f86
7f5e4af
b488f86
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import os
import tempfile
import uuid
import torch
from PIL import Image
from torchvision import transforms
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
from osediff_sd3 import OSEDiff_SD3_TEST, SD3Euler

# -------------------------------------------------------------------
# Helper: Resize & center-crop to a fixed square
# -------------------------------------------------------------------
def resize_and_center_crop(img: Image.Image, size: int) -> Image.Image:
    w, h = img.size
    scale = size / min(w, h)
    new_w, new_h = int(w * scale), int(h * scale)
    img = img.resize((new_w, new_h), Image.LANCZOS)
    left = (new_w - size) // 2
    top  = (new_h - size) // 2
    return img.crop((left, top, left + size, top + size))


# -------------------------------------------------------------------
# Helper: Generate a single VLM prompt for recursive_multiscale
# -------------------------------------------------------------------
def _generate_vlm_prompt(
    vlm_model,
    vlm_processor,
    process_vision_info,
    prev_image_path: str,
    zoomed_image_path: str,
    device: str = "cuda"
) -> str:
    """
    Given two image file paths:
      - prev_image_path:   the “full” image at the previous recursion.
      - zoomed_image_path: the cropped+resized (zoom) image for this step.
    This builds a single “recursive_multiscale” prompt via Qwen2.5-VL.
    Returns a string like “cat on sofa, pet, indoor, living room”, etc.
    """
    # (1) Define the system message for recursive_multiscale:
    message_text = (
        "The second image is a zoom-in of the first image. "
        "Based on this knowledge, what is in the second image? "
        "Give me a set of words."
    )

    # (2) Build the two-image “chat” payload:
    messages = [
        {"role": "system", "content": message_text},
        {
            "role": "user",
            "content": [
                {"type": "image", "image": prev_image_path},
                {"type": "image", "image": zoomed_image_path},
            ],
        },
    ]

    # (3) Wrap through the VL processor to get “inputs”:
    text = vlm_processor.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = vlm_processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    ).to(device)

    # (4) Generate tokens → decode
    generated = vlm_model.generate(**inputs, max_new_tokens=128)
    # strip off the prompt tokens from each generated sequence:
    trimmed = [
        out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated)
    ]
    out_text = vlm_processor.batch_decode(
        trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
    )[0]

    # (5) Return exactly the bare words (no extra “,” if no additional user prompt)
    return out_text.strip()


# -------------------------------------------------------------------
# Main Function: recursive_multiscale_sr (with multiple centers)
# -------------------------------------------------------------------
def recursive_multiscale_sr(
    input_png_path: str,
    upscale: int,
    rec_num: int = 4,
    centers: list[tuple[float, float]] = None,
) -> tuple[list[Image.Image], list[str]]:
    """
    Perform `rec_num` recursive_multiscale super-resolution steps on a single PNG.
    - input_png_path: path to a single .png file on disk.
    - upscale: integer up-scale factor per recursion (e.g. 4).
    - rec_num: how many recursion steps to perform.
    - centers: a list of normalized (x, y) tuples in [0, 1], one per recursion step,
               indicating where to center the low-res crop for each step. The list
               length must equal rec_num. If centers is None, defaults to center=(0.5, 0.5) 
               for all steps.

    Returns a tuple (sr_pil_list, prompt_list), where:
      - sr_pil_list: list of PIL.Image outputs [SR1, SR2, …, SR_rec_num] in order.
      - prompt_list: list of the VLM prompts generated at each recursion.
    """
    ###############################
    # 0. Validate / fill default centers
    ###############################
    if centers is None:
        # Default: use center (0.5, 0.5) for every recursion
        centers = [(0.5, 0.5) for _ in range(rec_num)]
    else:
        if not isinstance(centers, (list, tuple)) or len(centers) != rec_num:
            raise ValueError(
                f"`centers` must be a list of {rec_num} (x,y) tuples, but got length {len(centers)}."
            )

    ###############################
    # 1. Fixed hyper-parameters
    ###############################
    device = "cuda"
    process_size = 512     # same as args.process_size

    # model checkpoint paths (hard-coded to your example)
    LORA_PATH = "ckpt/SR_LoRA/model_20001.pkl"
    VAE_PATH  = "ckpt/SR_VAE/vae_encoder_20001.pt"
    SD3_MODEL = "stabilityai/stable-diffusion-3-medium-diffusers"
    # VLM model name (hard-coded)
    VLM_NAME  = "Qwen/Qwen2.5-VL-3B-Instruct"

    ###############################
    # 2. Build a dummy “args” namespace
    #    to satisfy OSEDiff_SD3_TEST constructor.
    ###############################
    class _Args:
        pass

    args = _Args()
    args.upscale                       = upscale
    args.lora_path                     = LORA_PATH
    args.vae_path                      = VAE_PATH
    args.pretrained_model_name_or_path = SD3_MODEL
    args.merge_and_unload_lora         = False
    args.lora_rank                     = 4
    args.vae_decoder_tiled_size        = 224
    args.vae_encoder_tiled_size        = 1024
    args.latent_tiled_size             = 96
    args.latent_tiled_overlap          = 32
    args.mixed_precision               = "fp16"
    args.efficient_memory              = False
    # (other flags are not used by OSEDiff_SD3_TEST, so we skip them)

    ###############################
    # 3. Load the SD3 SR model (non-efficient)
    ###############################
    # 3.1 Instantiate the underlying SD3-Euler UNet/VAE/text encoders
    sd3 = SD3Euler()
    # move all text encoders + transformer + VAE to CUDA:
    sd3.text_enc_1.to(device)
    sd3.text_enc_2.to(device)
    sd3.text_enc_3.to(device)
    sd3.transformer.to(device, dtype=torch.float32)
    sd3.vae.to(device, dtype=torch.float32)
    # freeze
    for p in (
        sd3.text_enc_1,
        sd3.text_enc_2,
        sd3.text_enc_3,
        sd3.transformer,
        sd3.vae,
    ):
        p.requires_grad_(False)

    # 3.2 Wrap in OSEDiff_SD3_TEST helper:
    model_test = OSEDiff_SD3_TEST(args, sd3)
    # (by default, “model_test(...)” takes (lq_tensor, prompt=str) and returns a list[tensor])

    ###############################
    # 4. Load the VLM (Qwen2.5-VL)
    ###############################
    vlm_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
        VLM_NAME,
        torch_dtype="auto",
        device_map="auto"   # immediately dispatches layers onto available GPUs
    )
    vlm_processor = AutoProcessor.from_pretrained(VLM_NAME)

    ###############################
    # 5. Pre-allocate a Temporary Directory
    #    to hold intermediate JPEG/PNG files
    ###############################
    unique_id = uuid.uuid4().hex
    prefix = f"recms_{unique_id}_"

    with tempfile.TemporaryDirectory(prefix=prefix) as td:
        # (we’ll write “prev.png” and “zoom.png” at each step)

        ###############################
        # 6. Prepare the very first “full” image
        ###############################
        # 6.1 Load + center crop → first_image is (512×512) PIL on CPU
        img0 = Image.open(input_png_path).convert("RGB")
        img0 = resize_and_center_crop(img0, process_size)

        # 6.2 Save it once so VLM can read it as “prev.png”
        prev_path = os.path.join(td, "step0_prev.png")
        img0.save(prev_path)

        # We will maintain lists of PIL outputs and prompts:
        sr_pil_list: list[Image.Image] = []
        prompt_list: list[str] = []

        ###############################
        # 7. Recursion loop (now up to rec_num times)
        ###############################
        for rec in range(rec_num):
            # (A) Load the previous SR output (or original) and compute crop window
            prev_pil = Image.open(prev_path).convert("RGB")
            w, h = prev_pil.size  # should be (512×512) each time

            # (1) Compute the “low-res” window size:
            new_w, new_h = w // upscale, h // upscale  # e.g. 128×128 for upscale=4

            # (2) Map normalized center → pixel center, then clamp so crop stays in bounds:
            cx_norm, cy_norm = centers[rec]
            cx = int(cx_norm * w)
            cy = int(cy_norm * h)
            half_w = new_w // 2
            half_h = new_h // 2

            # If center in pixels is too close to left/top, clamp so left=0 or top=0; same on right/bottom
            left = cx - half_w
            top = cy - half_h
            # clamp left ∈ [0, w - new_w], top ∈ [0, h - new_h]
            left = max(0, min(left, w - new_w))
            top = max(0, min(top, h - new_h))
            right = left + new_w
            bottom = top + new_h

            cropped = prev_pil.crop((left, top, right, bottom))

            # (B) Resize that crop back up to (512×512) via BICUBIC → zoomed
            zoomed = cropped.resize((w, h), Image.BICUBIC)
            zoom_path = os.path.join(td, f"step{rec+1}_zoom.png")
            zoomed.save(zoom_path)

            # (C) Generate a recursive_multiscale VLM “tag” prompt
            prompt_tag = _generate_vlm_prompt(
                vlm_model=vlm_model,
                vlm_processor=vlm_processor,
                process_vision_info=process_vision_info,
                prev_image_path=prev_path,
                zoomed_image_path=zoom_path,
                device=device,
            )
            # (By default, no extra user prompt is appended.)

            # (D) Prepare the low-res tensor for SR: convert zoomed → Tensor → [0,1] → [−1,1]
            to_tensor = transforms.ToTensor()
            lq = to_tensor(zoomed).unsqueeze(0).to(device)  # shape (1,3,512,512)
            lq = (lq * 2.0) - 1.0

            # (E) Do SR inference:
            with torch.no_grad():
                out_tensor = model_test(lq, prompt=prompt_tag)[0]  # (3,512,512) on CPU or GPU
                out_tensor = out_tensor.clamp(-1.0, 1.0).cpu()
                # back to PIL in [0,1]:
                out_pil = transforms.ToPILImage()((out_tensor * 0.5) + 0.5)

            # (F) Save this step’s SR output as “prev.png” for next iteration:
            out_path = os.path.join(td, f"step{rec+1}_sr.png")
            out_pil.save(out_path)
            prev_path = out_path

            # (G) Append the PIL to our list:
            sr_pil_list.append(out_pil)
            prompt_list.append(prompt_tag)

        # end for(rec)

        ###############################
        # 8. Return the SR outputs & prompts
        ###############################
        # The list sr_pil_list = [ SR1, SR2, …, SR_rec_num ] in order.
        return sr_pil_list, prompt_list