Spaces:
Running
on
Zero
Running
on
Zero
File size: 31,151 Bytes
18aa80b 8cf1fac 7e16671 8cf1fac 7e16671 8cf1fac 7e16671 18aa80b 7e16671 18aa80b 7e16671 18aa80b 8cf1fac 18aa80b aa0dca3 18aa80b e807a29 18aa80b 0e93421 18aa80b 3658605 18aa80b 9da755f 4cbb96f 18aa80b 94bc39b 18aa80b a0984d3 18aa80b 6509340 170e7a9 b892ff4 5aa0711 16839e7 17361a3 34e70bd 47e0e79 c16579a 4cbb96f 94bc39b 18aa80b ec82d26 18aa80b 468a4ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 |
import spaces
import subprocess
import gradio as gr
import os, sys
from glob import glob
from datetime import datetime
import math
import random
import librosa
import numpy as np
import uuid
import shutil
import importlib, site, sys
from huggingface_hub import hf_hub_download, snapshot_download
# Re-discover all .pth/.egg-link files
for sitedir in site.getsitepackages():
site.addsitedir(sitedir)
# Clear caches so importlib will pick up new modules
importlib.invalidate_caches()
def sh(cmd): subprocess.check_call(cmd, shell=True)
flash_attention_installed = False
try:
print("Attempting to download and install FlashAttention wheel...")
flash_attention_wheel = hf_hub_download(
repo_id="alexnasa/flash-attn-3",
repo_type="model",
filename="128/flash_attn_3-3.0.0b1-cp39-abi3-linux_x86_64.whl",
)
sh(f"pip install {flash_attention_wheel}")
# tell Python to re-scan site-packages now that the egg-link exists
import importlib, site; site.addsitedir(site.getsitepackages()[0]); importlib.invalidate_caches()
flash_attention_installed = True
print("FlashAttention installed successfully.")
except Exception as e:
print(f"⚠️ Could not install FlashAttention: {e}")
print("Continuing without FlashAttention...")
import torch
print(f"Torch version: {torch.__version__}")
print(f"FlashAttention available: {flash_attention_installed}")
import torch.nn as nn
from tqdm import tqdm
from functools import partial
from omegaconf import OmegaConf
from argparse import Namespace
# load the one true config you dumped
_args_cfg = OmegaConf.load("args_config.yaml")
args = Namespace(**OmegaConf.to_container(_args_cfg, resolve=True))
from OmniAvatar.utils.args_config import set_global_args
set_global_args(args)
# args = parse_args()
from OmniAvatar.utils.io_utils import load_state_dict
from peft import LoraConfig, inject_adapter_in_model
from OmniAvatar.models.model_manager import ModelManager
from OmniAvatar.schedulers.flow_match import FlowMatchScheduler
from OmniAvatar.wan_video import WanVideoPipeline
from OmniAvatar.utils.io_utils import save_video_as_grid_and_mp4
import torchvision.transforms as TT
from transformers import Wav2Vec2FeatureExtractor
import torchvision.transforms as transforms
import torch.nn.functional as F
from OmniAvatar.utils.audio_preprocess import add_silence_to_audio_ffmpeg
os.environ["PROCESSED_RESULTS"] = f"{os.getcwd()}/proprocess_results"
def tensor_to_pil(tensor):
"""
Args:
tensor: torch.Tensor with shape like
(1, C, H, W), (1, C, 1, H, W), (C, H, W), etc.
values in [-1, 1], on any device.
Returns:
A PIL.Image in RGB mode.
"""
# 1) Remove batch dim if it exists
if tensor.dim() > 3 and tensor.shape[0] == 1:
tensor = tensor[0]
# 2) Squeeze out any other singleton dims (e.g. that extra frame axis)
tensor = tensor.squeeze()
# Now we should have exactly 3 dims: (C, H, W)
if tensor.dim() != 3:
raise ValueError(f"Expected 3 dims after squeeze, got {tensor.dim()}")
# 3) Move to CPU float32
tensor = tensor.cpu().float()
# 4) Undo normalization from [-1,1] -> [0,1]
tensor = (tensor + 1.0) / 2.0
# 5) Clamp to [0,1]
tensor = torch.clamp(tensor, 0.0, 1.0)
# 6) To NumPy H×W×C in [0,255]
np_img = (tensor.permute(1, 2, 0).numpy() * 255.0).round().astype("uint8")
# 7) Build PIL Image
return Image.fromarray(np_img)
def set_seed(seed: int = 42):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed) # 设置当前GPU
torch.cuda.manual_seed_all(seed) # 设置所有GPU
def read_from_file(p):
with open(p, "r") as fin:
for l in fin:
yield l.strip()
def match_size(image_size, h, w):
ratio_ = 9999
size_ = 9999
select_size = None
for image_s in image_size:
ratio_tmp = abs(image_s[0] / image_s[1] - h / w)
size_tmp = abs(max(image_s) - max(w, h))
if ratio_tmp < ratio_:
ratio_ = ratio_tmp
size_ = size_tmp
select_size = image_s
if ratio_ == ratio_tmp:
if size_ == size_tmp:
select_size = image_s
return select_size
def resize_pad(image, ori_size, tgt_size):
h, w = ori_size
scale_ratio = max(tgt_size[0] / h, tgt_size[1] / w)
scale_h = int(h * scale_ratio)
scale_w = int(w * scale_ratio)
image = transforms.Resize(size=[scale_h, scale_w])(image)
padding_h = tgt_size[0] - scale_h
padding_w = tgt_size[1] - scale_w
pad_top = padding_h // 2
pad_bottom = padding_h - pad_top
pad_left = padding_w // 2
pad_right = padding_w - pad_left
image = F.pad(image, (pad_left, pad_right, pad_top, pad_bottom), mode='constant', value=0)
return image
class WanInferencePipeline(nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
self.device = torch.device(f"cuda")
self.dtype = torch.bfloat16
self.pipe = self.load_model()
chained_trainsforms = []
chained_trainsforms.append(TT.ToTensor())
self.transform = TT.Compose(chained_trainsforms)
if self.args.use_audio:
from OmniAvatar.models.wav2vec import Wav2VecModel
self.wav_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
self.args.wav2vec_path
)
self.audio_encoder = Wav2VecModel.from_pretrained(self.args.wav2vec_path, local_files_only=True).to(device=self.device, dtype=self.dtype)
self.audio_encoder.feature_extractor._freeze_parameters()
def load_model(self):
ckpt_path = f'{self.args.exp_path}/pytorch_model.pt'
assert os.path.exists(ckpt_path), f"pytorch_model.pt not found in {self.args.exp_path}"
if self.args.train_architecture == 'lora':
self.args.pretrained_lora_path = pretrained_lora_path = ckpt_path
else:
resume_path = ckpt_path
self.step = 0
# Load models
model_manager = ModelManager(device="cuda", infer=True)
model_manager.load_models(
[
self.args.dit_path.split(","),
self.args.vae_path,
self.args.text_encoder_path
],
torch_dtype=self.dtype,
device='cuda',
)
pipe = WanVideoPipeline.from_model_manager(model_manager,
torch_dtype=self.dtype,
device="cuda",
use_usp=False,
infer=True)
if self.args.train_architecture == "lora":
print(f'Use LoRA: lora rank: {self.args.lora_rank}, lora alpha: {self.args.lora_alpha}')
self.add_lora_to_model(
pipe.denoising_model(),
lora_rank=self.args.lora_rank,
lora_alpha=self.args.lora_alpha,
lora_target_modules=self.args.lora_target_modules,
init_lora_weights=self.args.init_lora_weights,
pretrained_lora_path=pretrained_lora_path,
)
print(next(pipe.denoising_model().parameters()).device)
else:
missing_keys, unexpected_keys = pipe.denoising_model().load_state_dict(load_state_dict(resume_path), strict=True)
print(f"load from {resume_path}, {len(missing_keys)} missing keys, {len(unexpected_keys)} unexpected keys")
pipe.requires_grad_(False)
pipe.eval()
# pipe.enable_vram_management(num_persistent_param_in_dit=args.num_persistent_param_in_dit)
return pipe
def add_lora_to_model(self, model, lora_rank=4, lora_alpha=4, lora_target_modules="q,k,v,o,ffn.0,ffn.2", init_lora_weights="kaiming", pretrained_lora_path=None, state_dict_converter=None):
# Add LoRA to UNet
self.lora_alpha = lora_alpha
if init_lora_weights == "kaiming":
init_lora_weights = True
lora_config = LoraConfig(
r=lora_rank,
lora_alpha=lora_alpha,
init_lora_weights=init_lora_weights,
target_modules=lora_target_modules.split(","),
)
model = inject_adapter_in_model(lora_config, model)
# Lora pretrained lora weights
if pretrained_lora_path is not None:
state_dict = load_state_dict(pretrained_lora_path, torch_dtype=self.dtype)
if state_dict_converter is not None:
state_dict = state_dict_converter(state_dict)
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
all_keys = [i for i, _ in model.named_parameters()]
num_updated_keys = len(all_keys) - len(missing_keys)
num_unexpected_keys = len(unexpected_keys)
print(f"{num_updated_keys} parameters are loaded from {pretrained_lora_path}. {num_unexpected_keys} parameters are unexpected.")
def get_times(self, prompt,
image_path=None,
audio_path=None,
seq_len=101, # not used while audio_path is not None
height=720,
width=720,
overlap_frame=None,
num_steps=None,
negative_prompt=None,
guidance_scale=None,
audio_scale=None):
overlap_frame = overlap_frame if overlap_frame is not None else self.args.overlap_frame
num_steps = num_steps if num_steps is not None else self.args.num_steps
negative_prompt = negative_prompt if negative_prompt is not None else self.args.negative_prompt
guidance_scale = guidance_scale if guidance_scale is not None else self.args.guidance_scale
audio_scale = audio_scale if audio_scale is not None else self.args.audio_scale
if image_path is not None:
from PIL import Image
image = Image.open(image_path).convert("RGB")
image = self.transform(image).unsqueeze(0).to(dtype=self.dtype)
_, _, h, w = image.shape
select_size = match_size(getattr( self.args, f'image_sizes_{ self.args.max_hw}'), h, w)
image = resize_pad(image, (h, w), select_size)
image = image * 2.0 - 1.0
image = image[:, :, None]
else:
image = None
select_size = [height, width]
num = self.args.max_tokens * 16 * 16 * 4
den = select_size[0] * select_size[1]
L0 = num // den
diff = (L0 - 1) % 4
L = L0 - diff
if L < 1:
L = 1
T = (L + 3) // 4
if self.args.random_prefix_frames:
fixed_frame = overlap_frame
assert fixed_frame % 4 == 1
else:
fixed_frame = 1
prefix_lat_frame = (3 + fixed_frame) // 4
first_fixed_frame = 1
audio, sr = librosa.load(audio_path, sr= self.args.sample_rate)
input_values = np.squeeze(
self.wav_feature_extractor(audio, sampling_rate=16000).input_values
)
input_values = torch.from_numpy(input_values).float().to(dtype=self.dtype)
audio_len = math.ceil(len(input_values) / self.args.sample_rate * self.args.fps)
if audio_len < L - first_fixed_frame:
audio_len = audio_len + ((L - first_fixed_frame) - audio_len % (L - first_fixed_frame))
elif (audio_len - (L - first_fixed_frame)) % (L - fixed_frame) != 0:
audio_len = audio_len + ((L - fixed_frame) - (audio_len - (L - first_fixed_frame)) % (L - fixed_frame))
seq_len = audio_len
times = (seq_len - L + first_fixed_frame) // (L-fixed_frame) + 1
if times * (L-fixed_frame) + fixed_frame < seq_len:
times += 1
return times
@torch.no_grad()
def forward(self, prompt,
image_path=None,
audio_path=None,
seq_len=101, # not used while audio_path is not None
height=720,
width=720,
overlap_frame=None,
num_steps=None,
negative_prompt=None,
guidance_scale=None,
audio_scale=None):
overlap_frame = overlap_frame if overlap_frame is not None else self.args.overlap_frame
num_steps = num_steps if num_steps is not None else self.args.num_steps
negative_prompt = negative_prompt if negative_prompt is not None else self.args.negative_prompt
guidance_scale = guidance_scale if guidance_scale is not None else self.args.guidance_scale
audio_scale = audio_scale if audio_scale is not None else self.args.audio_scale
if image_path is not None:
from PIL import Image
image = Image.open(image_path).convert("RGB")
image = self.transform(image).unsqueeze(0).to(self.device, dtype=self.dtype)
_, _, h, w = image.shape
select_size = match_size(getattr(self.args, f'image_sizes_{self.args.max_hw}'), h, w)
image = resize_pad(image, (h, w), select_size)
image = image * 2.0 - 1.0
image = image[:, :, None]
else:
image = None
select_size = [height, width]
# L = int(self.args.max_tokens * 16 * 16 * 4 / select_size[0] / select_size[1])
# L = L // 4 * 4 + 1 if L % 4 != 0 else L - 3 # video frames
# T = (L + 3) // 4 # latent frames
# step 1: numerator and denominator as ints
num = args.max_tokens * 16 * 16 * 4
den = select_size[0] * select_size[1]
# step 2: integer division
L0 = num // den # exact floor division, no float in sight
# step 3: make it ≡ 1 mod 4
# if L0 % 4 == 1, keep L0;
# otherwise subtract the difference so that (L0 - diff) % 4 == 1,
# but ensure the result stays positive.
diff = (L0 - 1) % 4
L = L0 - diff
if L < 1:
L = 1 # or whatever your minimal frame count is
# step 4: latent frames
T = (L + 3) // 4
if self.args.i2v:
if self.args.random_prefix_frames:
fixed_frame = overlap_frame
assert fixed_frame % 4 == 1
else:
fixed_frame = 1
prefix_lat_frame = (3 + fixed_frame) // 4
first_fixed_frame = 1
else:
fixed_frame = 0
prefix_lat_frame = 0
first_fixed_frame = 0
if audio_path is not None and self.args.use_audio:
audio, sr = librosa.load(audio_path, sr=self.args.sample_rate)
input_values = np.squeeze(
self.wav_feature_extractor(audio, sampling_rate=16000).input_values
)
input_values = torch.from_numpy(input_values).float().to(device=self.device, dtype=self.dtype)
ori_audio_len = audio_len = math.ceil(len(input_values) / self.args.sample_rate * self.args.fps)
input_values = input_values.unsqueeze(0)
# padding audio
if audio_len < L - first_fixed_frame:
audio_len = audio_len + ((L - first_fixed_frame) - audio_len % (L - first_fixed_frame))
elif (audio_len - (L - first_fixed_frame)) % (L - fixed_frame) != 0:
audio_len = audio_len + ((L - fixed_frame) - (audio_len - (L - first_fixed_frame)) % (L - fixed_frame))
input_values = F.pad(input_values, (0, audio_len * int(self.args.sample_rate / self.args.fps) - input_values.shape[1]), mode='constant', value=0)
with torch.no_grad():
hidden_states = self.audio_encoder(input_values, seq_len=audio_len, output_hidden_states=True)
audio_embeddings = hidden_states.last_hidden_state
for mid_hidden_states in hidden_states.hidden_states:
audio_embeddings = torch.cat((audio_embeddings, mid_hidden_states), -1)
seq_len = audio_len
audio_embeddings = audio_embeddings.squeeze(0)
audio_prefix = torch.zeros_like(audio_embeddings[:first_fixed_frame])
else:
audio_embeddings = None
# loop
times = (seq_len - L + first_fixed_frame) // (L-fixed_frame) + 1
if times * (L-fixed_frame) + fixed_frame < seq_len:
times += 1
video = []
image_emb = {}
img_lat = None
if self.args.i2v:
self.pipe.load_models_to_device(['vae'])
img_lat = self.pipe.encode_video(image.to(dtype=self.dtype)).to(self.device, dtype=self.dtype)
msk = torch.zeros_like(img_lat.repeat(1, 1, T, 1, 1)[:,:1], dtype=self.dtype)
image_cat = img_lat.repeat(1, 1, T, 1, 1)
msk[:, :, 1:] = 1
image_emb["y"] = torch.cat([image_cat, msk], dim=1)
for t in range(times):
print(f"[{t+1}/{times}]")
audio_emb = {}
if t == 0:
overlap = first_fixed_frame
else:
overlap = fixed_frame
image_emb["y"][:, -1:, :prefix_lat_frame] = 0 # 第一次推理是mask只有1,往后都是mask overlap
prefix_overlap = (3 + overlap) // 4
if audio_embeddings is not None:
if t == 0:
audio_tensor = audio_embeddings[
:min(L - overlap, audio_embeddings.shape[0])
]
else:
audio_start = L - first_fixed_frame + (t - 1) * (L - overlap)
audio_tensor = audio_embeddings[
audio_start: min(audio_start + L - overlap, audio_embeddings.shape[0])
]
audio_tensor = torch.cat([audio_prefix, audio_tensor], dim=0)
audio_prefix = audio_tensor[-fixed_frame:]
audio_tensor = audio_tensor.unsqueeze(0).to(device=self.device, dtype=self.dtype)
audio_emb["audio_emb"] = audio_tensor
else:
audio_prefix = None
if image is not None and img_lat is None:
self.pipe.load_models_to_device(['vae'])
img_lat = self.pipe.encode_video(image.to(dtype=self.dtype)).to(self.device, dtype=self.dtype)
assert img_lat.shape[2] == prefix_overlap
img_lat = torch.cat([img_lat, torch.zeros_like(img_lat[:, :, :1].repeat(1, 1, T - prefix_overlap, 1, 1), dtype=self.dtype)], dim=2)
frames, _, latents = self.pipe.log_video(img_lat, prompt, prefix_overlap, image_emb, audio_emb,
negative_prompt, num_inference_steps=num_steps,
cfg_scale=guidance_scale, audio_cfg_scale=audio_scale if audio_scale is not None else guidance_scale,
return_latent=True,
tea_cache_l1_thresh=self.args.tea_cache_l1_thresh,tea_cache_model_id="Wan2.1-T2V-14B")
torch.cuda.empty_cache()
img_lat = None
image = (frames[:, -fixed_frame:].clip(0, 1) * 2.0 - 1.0).permute(0, 2, 1, 3, 4).contiguous()
if t == 0:
video.append(frames)
else:
video.append(frames[:, overlap:])
video = torch.cat(video, dim=1)
video = video[:, :ori_audio_len + 1]
return video
snapshot_download(repo_id="Wan-AI/Wan2.1-T2V-14B", local_dir="./pretrained_models/Wan2.1-T2V-14B")
snapshot_download(repo_id="facebook/wav2vec2-base-960h", local_dir="./pretrained_models/wav2vec2-base-960h")
snapshot_download(repo_id="OmniAvatar/OmniAvatar-14B", local_dir="./pretrained_models/OmniAvatar-14B")
# snapshot_download(repo_id="Wan-AI/Wan2.1-T2V-1.3B", local_dir="./pretrained_models/Wan2.1-T2V-1.3B")
# snapshot_download(repo_id="facebook/wav2vec2-base-960h", local_dir="./pretrained_models/wav2vec2-base-960h")
# snapshot_download(repo_id="OmniAvatar/OmniAvatar-1.3B", local_dir="./pretrained_models/OmniAvatar-1.3B")
import tempfile
from PIL import Image
set_seed(args.seed)
seq_len = args.seq_len
inferpipe = WanInferencePipeline(args)
def update_generate_button(image_path, audio_path, text, num_steps):
if image_path is None or audio_path is None:
return gr.update(value="⌚ Zero GPU Required: --")
duration_s = get_duration(image_path, audio_path, text, num_steps, None, None)
duration_m = duration_s / 60
return gr.update(value=f"⌚ Zero GPU Required: ~{duration_s}.0s ({duration_m:.1f} mins)")
def get_duration(image_path, audio_path, text, num_steps, session_id, progress):
audio_chunks = inferpipe.get_times(
prompt=text,
image_path=image_path,
audio_path=audio_path,
seq_len=args.seq_len,
num_steps=num_steps
)
warmup_s = 30
duration_s = (20 * num_steps) + warmup_s
if audio_chunks > 1:
duration_s = (20 * num_steps * audio_chunks) + warmup_s
print(f'for {audio_chunks} times, might take {duration_s}')
return int(duration_s)
def preprocess_img(image_path, session_id = None):
if session_id is None:
session_id = uuid.uuid4().hex
image = Image.open(image_path).convert("RGB")
image = inferpipe.transform(image).unsqueeze(0).to(dtype=inferpipe.dtype)
_, _, h, w = image.shape
select_size = match_size(getattr( args, f'image_sizes_{ args.max_hw}'), h, w)
image = resize_pad(image, (h, w), select_size)
image = image * 2.0 - 1.0
image = image[:, :, None]
output_dir = os.path.join(os.environ["PROCESSED_RESULTS"], session_id)
img_dir = output_dir + '/image'
os.makedirs(img_dir, exist_ok=True)
input_img_path = os.path.join(img_dir, f"img_input.jpg")
image = tensor_to_pil(image)
image.save(input_img_path)
return input_img_path
@spaces.GPU(duration=get_duration)
def infer(image_path, audio_path, text, num_steps, session_id = None, progress=gr.Progress(track_tqdm=True),):
if session_id is None:
session_id = uuid.uuid4().hex
output_dir = os.path.join(os.environ["PROCESSED_RESULTS"], session_id)
audio_dir = output_dir + '/audio'
os.makedirs(audio_dir, exist_ok=True)
if args.silence_duration_s > 0:
input_audio_path = os.path.join(audio_dir, f"audio_input.wav")
else:
input_audio_path = audio_path
prompt_dir = output_dir + '/prompt'
os.makedirs(prompt_dir, exist_ok=True)
if args.silence_duration_s > 0:
add_silence_to_audio_ffmpeg(audio_path, input_audio_path, args.silence_duration_s)
tmp2_audio_path = os.path.join(audio_dir, f"audio_out.wav")
prompt_path = os.path.join(prompt_dir, f"prompt.txt")
video = inferpipe(
prompt=text,
image_path=image_path,
audio_path=input_audio_path,
seq_len=args.seq_len,
num_steps=num_steps
)
torch.cuda.empty_cache()
add_silence_to_audio_ffmpeg(audio_path, tmp2_audio_path, 1.0 / args.fps + args.silence_duration_s)
video_paths = save_video_as_grid_and_mp4(video,
output_dir,
args.fps,
prompt=text,
prompt_path = prompt_path,
audio_path=tmp2_audio_path if args.use_audio else None,
prefix=f'result')
return video_paths[0]
def cleanup(request: gr.Request):
sid = request.session_hash
if sid:
d1 = os.path.join(os.environ["PROCESSED_RESULTS"], sid)
shutil.rmtree(d1, ignore_errors=True)
def start_session(request: gr.Request):
return request.session_hash
css = """
#col-container {
margin: 0 auto;
max-width: 1560px;
}
"""
with gr.Blocks(css=css) as demo:
session_state = gr.State()
demo.load(start_session, outputs=[session_state])
with gr.Column(elem_id="col-container"):
gr.HTML(
"""
<div style="text-align: left;">
<p style="font-size:16px; display: inline; margin: 0;">
<strong>OmniAvatar</strong> – Efficient Audio-Driven Avatar Video Generation with Adaptive Body Animation
</p>
<a href="https://huggingface.co/OmniAvatar/OmniAvatar-14B" style="display: inline-block; vertical-align: middle; margin-left: 0.5em;">
[model]
</a>
</div>
<div style="text-align: left;">
<strong>HF Space by:</strong>
<a href="https://twitter.com/alexandernasa/" style="display: inline-block; vertical-align: middle; margin-left: 0.5em;">
<img src="https://img.shields.io/twitter/url/https/twitter.com/cloudposse.svg?style=social&label=Follow Me" alt="GitHub Repo">
</a>
</div>
"""
)
with gr.Row():
with gr.Column():
image_input = gr.Image(label="Reference Image", type="filepath", height=512)
audio_input = gr.Audio(label="Input Audio", type="filepath")
with gr.Column():
output_video = gr.Video(label="Avatar", height=512)
num_steps = gr.Slider(4, 50, value=8, step=1, label="Steps")
time_required = gr.Text(value="⌚ Zero GPU Required: --", show_label=False)
infer_btn = gr.Button("🦜 Avatar Me", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
text_input = gr.Textbox(label="Video Prompt", lines=6, value="A realistic video of a man speaking and sometimes looking directly to the camera and moving her eyes and pupils and head accordingly and he shakes his head in disappointment and tell look stright into the camera , with dynamic and rhythmic and extensive hand gestures that complement his speech. His hands are clearly visible, independent, and unobstructed. His facial expressions are expressive and full of emotion, enhancing the delivery. The camera remains steady, capturing sharp, clear movements and a focused, engaging presence.")
with gr.Column():
examples = gr.Examples(
examples=[
[
"examples/images/male-001.png",
"examples/audios/denial.wav",
"A realistic video of a man speaking and sometimes looking directly to the camera and moving her eyes and pupils and head accordingly and he shakes his head in disappointment and tell look stright into the camera , with dynamic and rhythmic and extensive hand gestures that complement his speech. His hands are clearly visible, independent, and unobstructed. His facial expressions are expressive and full of emotion, enhancing the delivery. The camera remains steady, capturing sharp, clear movements and a focused, engaging presence.",
12
],
[
"examples/images/female-001.png",
"examples/audios/script.wav",
"A realistic video of a woman speaking and sometimes looking directly to the camera and moving her eyes and pupils and head accordingly and turning and looking at the camera and looking away from the camera based on her movements, sitting on a sofa, with dynamic and rhythmic and extensive hand gestures that complement his speech. His hands are clearly visible, independent, and unobstructed. His facial expressions are expressive and full of emotion, enhancing the delivery. The camera remains steady, capturing sharp, clear movements and a focused, engaging presence.",
14
],
[
"examples/images/female-002.png",
"examples/audios/nature.wav",
"A realistic video of a woman speaking and sometimes looking directly to the camera and moving her eyes and pupils and head accordingly and turning and looking at the camera and looking away from the camera based on her movements, standing in the woods, with dynamic and rhythmic and extensive hand gestures that complement his speech. Her hands are clearly visible, independent, and unobstructed. Her facial expressions are expressive and full of emotion, enhancing the delivery. The camera remains steady, capturing sharp, clear movements and a focused, engaging presence.",
10
],
# [
# "examples/images/female-003.png",
# "examples/audios/matcha.wav",
# "A realistic video of a sad woman speaking and sometimes looking directly to the camera and moving her eyes and pupils and head accordingly and turning and looking at the camera and looking away from the camera based on her movements, touching a glass in front of her, with dynamic and rhythmic and extensive hand gestures that complement his speech. Her hands are clearly visible, independent, and unobstructed. Her facial expressions are expressive and full of emotion, enhancing the delivery. The camera remains steady, capturing sharp, clear movements and a focused, engaging presence.",
# 20
# ],
],
inputs=[image_input, audio_input, text_input, num_steps],
outputs=[output_video],
fn=infer,
cache_examples=True
)
infer_btn.click(
fn=infer,
inputs=[image_input, audio_input, text_input, num_steps, session_state],
outputs=[output_video]
)
image_input.upload(fn=preprocess_img, inputs=[image_input, session_state], outputs=[image_input])
image_input.change(fn=update_generate_button, inputs=[image_input, audio_input, text_input, num_steps], outputs=[time_required])
audio_input.change(fn=update_generate_button, inputs=[image_input, audio_input, text_input, num_steps], outputs=[time_required])
num_steps.change(fn=update_generate_button, inputs=[image_input, audio_input, text_input, num_steps], outputs=[time_required])
if __name__ == "__main__":
demo.unload(cleanup)
demo.queue()
demo.launch(ssr_mode=False) |