File size: 17,341 Bytes
468a4ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import subprocess
import os, sys
from glob import glob
from datetime import datetime
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
import math
import random
import librosa
import numpy as np
import torch
import torch.nn as nn
from tqdm import tqdm
from functools import partial
from omegaconf import OmegaConf
from argparse import Namespace

# # load the one true config you dumped
# _args_cfg = OmegaConf.load("demo_out/config/args_config.yaml")
# args = Namespace(**OmegaConf.to_container(_args_cfg, resolve=True))

# from OmniAvatar.utils.args_config import set_global_args

# set_global_args(args)

from OmniAvatar.utils.args_config import parse_args
args = parse_args()

from OmniAvatar.utils.io_utils import load_state_dict 
from peft import LoraConfig, inject_adapter_in_model
from OmniAvatar.models.model_manager import ModelManager
from OmniAvatar.wan_video import WanVideoPipeline
from OmniAvatar.utils.io_utils import save_video_as_grid_and_mp4
import torchvision.transforms as TT
from transformers import Wav2Vec2FeatureExtractor
import torchvision.transforms as transforms
import torch.nn.functional as F
from OmniAvatar.utils.audio_preprocess import add_silence_to_audio_ffmpeg
from huggingface_hub import hf_hub_download

def set_seed(seed: int = 42):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)  # 设置当前GPU
    torch.cuda.manual_seed_all(seed)  # 设置所有GPU

def read_from_file(p):
    with open(p, "r") as fin:
        for l in fin:
            yield l.strip()

def match_size(image_size, h, w):
    ratio_ = 9999
    size_ = 9999
    select_size = None
    for image_s in image_size:
        ratio_tmp = abs(image_s[0] / image_s[1] - h / w)
        size_tmp = abs(max(image_s) - max(w, h))
        if ratio_tmp < ratio_:
            ratio_ = ratio_tmp
            size_ = size_tmp
            select_size = image_s
        if ratio_ == ratio_tmp:
            if size_ == size_tmp:
                select_size = image_s
    return select_size

def resize_pad(image, ori_size, tgt_size):
    h, w = ori_size
    scale_ratio = max(tgt_size[0] / h, tgt_size[1] / w)
    scale_h = int(h * scale_ratio)
    scale_w = int(w * scale_ratio)

    image = transforms.Resize(size=[scale_h, scale_w])(image)

    padding_h = tgt_size[0] - scale_h
    padding_w = tgt_size[1] - scale_w
    pad_top = padding_h // 2
    pad_bottom = padding_h - pad_top
    pad_left = padding_w // 2
    pad_right = padding_w - pad_left

    image = F.pad(image, (pad_left, pad_right, pad_top, pad_bottom), mode='constant', value=0)
    return image

class WanInferencePipeline(nn.Module):
    def __init__(self, args):
        super().__init__()
        self.args = args
        self.device = torch.device(f"cuda")
        if self.args.dtype=='bf16':
            self.dtype = torch.bfloat16
        elif self.args.dtype=='fp16':
            self.dtype = torch.float16
        else:   
            self.dtype = torch.float32
        self.pipe = self.load_model()
        if self.args.i2v:
            chained_trainsforms = []
            chained_trainsforms.append(TT.ToTensor())
            self.transform = TT.Compose(chained_trainsforms)
        if self.args.use_audio:
            from OmniAvatar.models.wav2vec import Wav2VecModel
            self.wav_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
                    self.args.wav2vec_path
                )
            self.audio_encoder = Wav2VecModel.from_pretrained(self.args.wav2vec_path, local_files_only=True).to(device=self.device)
            self.audio_encoder.feature_extractor._freeze_parameters()

    def load_model(self):
        torch.cuda.set_device(0)
        ckpt_path = f'{self.args.exp_path}/pytorch_model.pt'
        assert os.path.exists(ckpt_path), f"pytorch_model.pt not found in {self.args.exp_path}"
        if self.args.train_architecture == 'lora':
            self.args.pretrained_lora_path = pretrained_lora_path = ckpt_path
        else:
            resume_path = ckpt_path
        
        self.step = 0

        # Load models
        model_manager = ModelManager(device="cpu", infer=True)
        model_manager.load_models(
            [
                self.args.dit_path.split(","),
                self.args.text_encoder_path,
                self.args.vae_path
            ],
            torch_dtype=self.dtype, # You can set `torch_dtype=torch.bfloat16` to disable FP8 quantization.
            device='cpu',
        )
        LORA_REPO_ID = "Kijai/WanVideo_comfy"
        LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
        causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
        model_manager.load_lora(causvid_path, lora_alpha=1.0)
        pipe = WanVideoPipeline.from_model_manager(model_manager, 
                                                torch_dtype=self.dtype, 
                                                device=f"cuda", 
                                                use_usp=True if self.args.sp_size > 1 else False,
                                                infer=True)
        if self.args.train_architecture == "lora":
            print(f'Use LoRA: lora rank: {self.args.lora_rank}, lora alpha: {self.args.lora_alpha}')
            self.add_lora_to_model(
                    pipe.denoising_model(),
                    lora_rank=self.args.lora_rank,
                    lora_alpha=self.args.lora_alpha,
                    lora_target_modules=self.args.lora_target_modules,
                    init_lora_weights=self.args.init_lora_weights,
                    pretrained_lora_path=pretrained_lora_path,
                )
        else:
            missing_keys, unexpected_keys = pipe.denoising_model().load_state_dict(load_state_dict(resume_path), strict=True)
            print(f"load from {resume_path}, {len(missing_keys)} missing keys, {len(unexpected_keys)} unexpected keys")
        pipe.requires_grad_(False)
        pipe.eval()
        pipe.enable_vram_management(num_persistent_param_in_dit=self.args.num_persistent_param_in_dit) # You can set `num_persistent_param_in_dit` to a small number to reduce VRAM required. 
        return pipe
    
    def add_lora_to_model(self, model, lora_rank=4, lora_alpha=4, lora_target_modules="q,k,v,o,ffn.0,ffn.2", init_lora_weights="kaiming", pretrained_lora_path=None, state_dict_converter=None):
        # Add LoRA to UNet
        self.lora_alpha = lora_alpha
        if init_lora_weights == "kaiming":
            init_lora_weights = True
            
        lora_config = LoraConfig(
            r=lora_rank,
            lora_alpha=lora_alpha,
            init_lora_weights=init_lora_weights,
            target_modules=lora_target_modules.split(","),
        )
        model = inject_adapter_in_model(lora_config, model)
                
        # Lora pretrained lora weights
        if pretrained_lora_path is not None:
            state_dict = load_state_dict(pretrained_lora_path)
            if state_dict_converter is not None:
                state_dict = state_dict_converter(state_dict)
            missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
            all_keys = [i for i, _ in model.named_parameters()]
            num_updated_keys = len(all_keys) - len(missing_keys)
            num_unexpected_keys = len(unexpected_keys)
            print(f"{num_updated_keys} parameters are loaded from {pretrained_lora_path}. {num_unexpected_keys} parameters are unexpected.")
    
    
    def forward(self, prompt, 

                image_path=None, 

                audio_path=None, 

                seq_len=101, # not used while audio_path is not None

                height=720, 

                width=720,

                overlap_frame=None,

                num_steps=None,

                negative_prompt=None,

                guidance_scale=None,

                audio_scale=None):
        overlap_frame = overlap_frame if overlap_frame is not None else self.args.overlap_frame
        num_steps = num_steps if num_steps is not None else self.args.num_steps
        negative_prompt = negative_prompt if negative_prompt is not None else self.args.negative_prompt
        guidance_scale = guidance_scale if guidance_scale is not None else self.args.guidance_scale
        audio_scale = audio_scale if audio_scale is not None else self.args.audio_scale

        if image_path is not None:
            from PIL import Image
            image = Image.open(image_path).convert("RGB")
            image = self.transform(image).unsqueeze(0).to(self.device)
            _, _, h, w = image.shape
            select_size = match_size(getattr(self.args, f'image_sizes_{self.args.max_hw}'), h, w)
            image = resize_pad(image, (h, w), select_size)
            image = image * 2.0 - 1.0
            image = image[:, :, None]
        else:
            image = None
            select_size = [height, width]
        L = int(self.args.max_tokens * 16 * 16 * 4 / select_size[0] / select_size[1])
        L = L // 4 * 4 + 1 if L % 4 != 0 else L - 3  # video frames
        T = (L + 3) // 4  # latent frames

        if self.args.i2v:
            if self.args.random_prefix_frames:
                fixed_frame = overlap_frame
                assert fixed_frame % 4 == 1
            else:
                fixed_frame = 1
            prefix_lat_frame = (3 + fixed_frame) // 4
            first_fixed_frame = 1
        else:
            fixed_frame = 0
            prefix_lat_frame = 0
            first_fixed_frame = 0


        if audio_path is not None and self.args.use_audio:
            audio, sr = librosa.load(audio_path, sr=self.args.sample_rate)
            input_values = np.squeeze(
                    self.wav_feature_extractor(audio, sampling_rate=16000).input_values
                )
            input_values = torch.from_numpy(input_values).float().to(device=self.device)
            ori_audio_len = audio_len = math.ceil(len(input_values) / self.args.sample_rate * self.args.fps)
            input_values = input_values.unsqueeze(0)
            # padding audio
            if audio_len < L - first_fixed_frame:
                audio_len = audio_len + ((L - first_fixed_frame) - audio_len % (L - first_fixed_frame))
            elif (audio_len - (L - first_fixed_frame)) % (L - fixed_frame) != 0:
                audio_len = audio_len + ((L - fixed_frame) - (audio_len - (L - first_fixed_frame)) % (L - fixed_frame))
            input_values = F.pad(input_values, (0, audio_len * int(self.args.sample_rate / self.args.fps) - input_values.shape[1]), mode='constant', value=0)
            with torch.no_grad():
                hidden_states = self.audio_encoder(input_values, seq_len=audio_len, output_hidden_states=True)
                audio_embeddings = hidden_states.last_hidden_state
                for mid_hidden_states in hidden_states.hidden_states:
                    audio_embeddings = torch.cat((audio_embeddings, mid_hidden_states), -1)
            seq_len = audio_len
            audio_embeddings = audio_embeddings.squeeze(0)
            audio_prefix = torch.zeros_like(audio_embeddings[:first_fixed_frame])
        else:
            audio_embeddings = None

        # loop
        times = (seq_len - L + first_fixed_frame) // (L-fixed_frame) + 1
        if times * (L-fixed_frame) + fixed_frame < seq_len:
            times += 1
        video = []
        image_emb = {}
        img_lat = None
        if self.args.i2v:
            self.pipe.load_models_to_device(['vae'])
            img_lat = self.pipe.encode_video(image.to(dtype=self.dtype)).to(self.device)

            msk = torch.zeros_like(img_lat.repeat(1, 1, T, 1, 1)[:,:1])
            image_cat = img_lat.repeat(1, 1, T, 1, 1)
            msk[:, :, 1:] = 1
            image_emb["y"] = torch.cat([image_cat, msk], dim=1)
        for t in range(times):
            print(f"[{t+1}/{times}]")
            audio_emb = {}
            if t == 0:
                overlap = first_fixed_frame
            else:
                overlap = fixed_frame
                image_emb["y"][:, -1:, :prefix_lat_frame] = 0 # 第一次推理是mask只有1,往后都是mask overlap
            prefix_overlap = (3 + overlap) // 4
            if audio_embeddings is not None:
                if t == 0:
                    audio_tensor = audio_embeddings[
                            :min(L - overlap, audio_embeddings.shape[0])
                        ]
                else:
                    audio_start = L - first_fixed_frame + (t - 1) * (L - overlap)
                    audio_tensor = audio_embeddings[
                        audio_start: min(audio_start + L - overlap, audio_embeddings.shape[0])
                    ]
                    
                audio_tensor = torch.cat([audio_prefix, audio_tensor], dim=0)
                audio_prefix = audio_tensor[-fixed_frame:]
                audio_tensor = audio_tensor.unsqueeze(0).to(device=self.device, dtype=self.dtype)
                audio_emb["audio_emb"] = audio_tensor
            else:
                audio_prefix = None
            if image is not None and img_lat is None:
                self.pipe.load_models_to_device(['vae'])
                img_lat = self.pipe.encode_video(image.to(dtype=self.dtype)).to(self.device)
                assert img_lat.shape[2] == prefix_overlap
            img_lat = torch.cat([img_lat, torch.zeros_like(img_lat[:, :, :1].repeat(1, 1, T - prefix_overlap, 1, 1))], dim=2)
            frames, _, latents = self.pipe.log_video(img_lat, prompt, prefix_overlap, image_emb, audio_emb,
                                                 negative_prompt, num_inference_steps=num_steps, 
                                                 cfg_scale=guidance_scale, audio_cfg_scale=audio_scale if audio_scale is not None else guidance_scale,
                                                 return_latent=True,
                                                 tea_cache_l1_thresh=self.args.tea_cache_l1_thresh,tea_cache_model_id="Wan2.1-T2V-14B")
            img_lat = None
            image = (frames[:, -fixed_frame:].clip(0, 1) * 2 - 1).permute(0, 2, 1, 3, 4).contiguous()
            if t == 0:
                video.append(frames)
            else:
                video.append(frames[:, overlap:])
        video = torch.cat(video, dim=1)
        video = video[:, :ori_audio_len + 1]
        return video


def main():

    # os.makedirs("demo_out/config", exist_ok=True)
    # OmegaConf.save(config=OmegaConf.create(vars(args)),
    #                f="demo_out/config/args_config.yaml")
    # print("Saved merged args to demo_out/config/args_config.yaml")

    set_seed(args.seed)
    # laod data
    data_iter = read_from_file(args.input_file)
    exp_name = os.path.basename(args.exp_path)
    seq_len = args.seq_len

    # Text-to-video
    inferpipe = WanInferencePipeline(args)

    output_dir = f'demo_out'

    idx = 0
    text =  "A realistic video of a man speaking directly to the camera on a sofa, with dynamic and rhythmic hand gestures that complement his speech. His hands are clearly visible, independent, and unobstructed. His facial expressions are expressive and full of emotion, enhancing the delivery. The camera remains steady, capturing sharp, clear movements and a focused, engaging presence."
    image_path =  "examples/images/0000.jpeg"
    audio_path = "examples/audios/0000.MP3"
    audio_dir = output_dir + '/audio'
    os.makedirs(audio_dir, exist_ok=True)
    if args.silence_duration_s > 0:
        input_audio_path = os.path.join(audio_dir, f"audio_input_{idx:03d}.wav")
    else:
        input_audio_path = audio_path
    prompt_dir = output_dir + '/prompt'
    os.makedirs(prompt_dir, exist_ok=True)

    if args.silence_duration_s > 0:
        add_silence_to_audio_ffmpeg(audio_path, input_audio_path, args.silence_duration_s)

    video = inferpipe(
        prompt=text,
        image_path=image_path,
        audio_path=input_audio_path,
        seq_len=seq_len
    )
    tmp2_audio_path = os.path.join(audio_dir, f"audio_out_{idx:03d}.wav") # 因为第一帧是参考帧,因此需要往前1/25秒
    prompt_path = os.path.join(prompt_dir, f"prompt_{idx:03d}.txt") 
    

    add_silence_to_audio_ffmpeg(audio_path, tmp2_audio_path, 1.0 / args.fps + args.silence_duration_s)
    save_video_as_grid_and_mp4(video, 
                            output_dir, 
                            args.fps, 
                            prompt=text,
                            prompt_path = prompt_path,
                            audio_path=tmp2_audio_path if args.use_audio else None, 
                            prefix=f'result_{idx:03d}')


class NoPrint:
    def write(self, x):
        pass
    def flush(self):
        pass

if __name__ == '__main__':
    if not args.debug:
        if args.local_rank != 0: # 屏蔽除0外的输出
            sys.stdout = NoPrint()
    main()