File size: 14,131 Bytes
f108aa8
 
 
c5402af
 
f108aa8
c5402af
 
f108aa8
c5402af
2a9686f
3ec8a24
d8c8548
 
 
c5402af
fcfad21
f108aa8
c5402af
f108aa8
 
1c1ff82
 
 
 
 
 
 
 
 
 
9177085
1c1ff82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ae4746
1c1ff82
 
 
 
 
 
2a9686f
 
1c1ff82
9177085
 
 
 
 
 
 
 
ac4feba
ce940a6
1c1ff82
 
 
 
d8c8548
f108aa8
15066eb
166aa76
15066eb
 
 
 
f108aa8
 
8dd9712
f108aa8
 
 
 
 
 
 
 
 
 
 
 
e1a0427
 
 
 
2a5edd9
 
3ec8a24
 
 
 
 
 
 
 
 
 
 
 
 
b7bf602
3ec8a24
9df3406
b7bf602
9df3406
b7bf602
9df3406
3ec8a24
 
166aa76
b7bf602
166aa76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ec8a24
f108aa8
166aa76
d37df73
b3f7f27
8dd9712
 
 
 
2a9686f
 
 
2d034f7
f108aa8
c1fa643
 
 
 
 
166aa76
c1fa643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166aa76
c1fa643
f108aa8
1e9e245
2a9686f
 
 
 
 
f108aa8
8dd9712
f108aa8
e20f68b
f108aa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a9686f
040b217
 
 
 
 
f108aa8
2d1dbb6
 
 
f108aa8
2d1dbb6
 
 
824b10c
 
 
c9bf2bf
 
c4a18a0
 
166aa76
 
f108aa8
2a9686f
 
 
 
 
 
 
 
 
 
 
f108aa8
b3f7f27
 
 
d37f4d2
b3f7f27
 
 
 
 
2a9686f
 
 
b3f7f27
794537a
 
 
 
165e9ba
794537a
 
 
 
 
d633cbe
 
 
 
 
794537a
 
b3f7f27
 
d633cbe
92bf5b8
b3f7f27
a71a547
 
b3f7f27
 
 
 
 
 
 
72559fa
b3f7f27
51a6fa2
ac4feba
 
 
2a9686f
ac4feba
 
 
c9bf2bf
166aa76
 
92bf5b8
 
 
 
 
 
 
 
 
 
 
 
 
 
3533cff
 
 
 
 
 
92bf5b8
7124791
92bf5b8
 
166aa76
 
 
92bf5b8
b3f7f27
166aa76
b3f7f27
2a9686f
166aa76
 
 
 
 
b3f7f27
f108aa8
 
 
2a9686f
 
1948657
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import spaces
import gradio as gr
import os
import sys
from glob import glob
import time
from typing import Any, Union

import numpy as np
import torch
import uuid
import shutil

print(f'torch version:{torch.__version__}')

import trimesh
import glob
from huggingface_hub import snapshot_download
from PIL import Image
from accelerate.utils import set_seed

import subprocess
import importlib, site, sys

# Re-discover all .pth/.egg-link files
for sitedir in site.getsitepackages():
    site.addsitedir(sitedir)

# Clear caches so importlib will pick up new modules
importlib.invalidate_caches()

def sh(cmd): subprocess.check_call(cmd, shell=True)

def install_cuda_toolkit():
    CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.6.0/local_installers/cuda_12.6.0_560.28.03_linux.run"
    CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
    subprocess.check_call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
    subprocess.check_call(["chmod", "+x", CUDA_TOOLKIT_FILE])
    subprocess.check_call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])

    os.environ["CUDA_HOME"] = "/usr/local/cuda"
    os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
    os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
        os.environ["CUDA_HOME"],
        "" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
    )
    # add for compiler header lookup
    os.environ["CPATH"] = f"{os.environ['CUDA_HOME']}/include" + (
        f":{os.environ['CPATH']}" if "CPATH" in os.environ else ""
    )
    # Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
    os.environ["TORCH_CUDA_ARCH_LIST"] = "8.9;9.0"
    print("==> finished installation")

print("installing cuda toolkit")
install_cuda_toolkit()
print("finished")

os.environ["PARTCRAFTER_PROCESSED"] = f"{os.getcwd()}/proprocess_results"


def sh(cmd_list, extra_env=None):
    env = os.environ.copy()
    if extra_env:
        env.update(extra_env)
    subprocess.check_call(cmd_list, env=env)

# install with FORCE_CUDA=1
sh(["pip", "install", "diso"], {"FORCE_CUDA": "1"})
# sh(["pip", "install", "torch-cluster", "-f", "https://data.pyg.org/whl/torch-2.7.0+126.html"])



# tell Python to re-scan site-packages now that the egg-link exists
import importlib, site; site.addsitedir(site.getsitepackages()[0]); importlib.invalidate_caches()


from src.utils.data_utils import get_colored_mesh_composition, scene_to_parts, load_surfaces
from src.utils.render_utils import render_views_around_mesh, render_normal_views_around_mesh, make_grid_for_images_or_videos, export_renderings, explode_mesh
from src.pipelines.pipeline_partcrafter import PartCrafterPipeline
from src.utils.image_utils import prepare_image
from src.models.briarmbg import BriaRMBG

# Constants
MAX_NUM_PARTS = 16
DEVICE = "cuda" 
DTYPE = torch.float16

# Download and initialize models
partcrafter_weights_dir = "pretrained_weights/PartCrafter"
rmbg_weights_dir = "pretrained_weights/RMBG-1.4"
snapshot_download(repo_id="wgsxm/PartCrafter", local_dir=partcrafter_weights_dir)
snapshot_download(repo_id="briaai/RMBG-1.4", local_dir=rmbg_weights_dir)

rmbg_net = BriaRMBG.from_pretrained(rmbg_weights_dir).to(DEVICE)
rmbg_net.eval()
pipe: PartCrafterPipeline = PartCrafterPipeline.from_pretrained(partcrafter_weights_dir).to(DEVICE, DTYPE)

def first_file_from_dir(directory, ext):
    files = glob.glob(os.path.join(directory, f"*.{ext}"))
    return sorted(files)[0] if files else None



def get_duration(
    image_path,
    num_parts,
    seed,
    num_tokens,
    num_inference_steps,
    guidance_scale,
    use_flash_decoder,
    rmbg,
    session_id,
    progress,
    ):

    duration_seconds = 75

    if num_parts > 10:
        duration_seconds = 120
    elif num_parts > 5:
        duration_seconds = 90
    
    return int(duration_seconds)
        

@spaces.GPU(duration=140)
def gen_model_n_video(image_path: str,
                      num_parts: int,
                      progress=gr.Progress(track_tqdm=True),):

    model_path = run_partcrafter(image_path, num_parts=num_parts, progress=progress)
    video_path = gen_video(model_path)

    return model_path, video_path

@spaces.GPU()
def gen_video(model_path):

    if model_path is None:
        gr.Info("You must craft the 3d parts first")

        return None
        
    export_dir = os.path.dirname(model_path)

    merged = trimesh.load(model_path)

    preview_path = os.path.join(export_dir, "rendering.gif")

    num_views = 36
    radius = 4
    fps = 7
    rendered_images = render_views_around_mesh(
        merged,
        num_views=num_views,
        radius=radius,
    )

    export_renderings(
        rendered_images,
        preview_path,
        fps=fps,
    )
    return preview_path

@spaces.GPU(duration=get_duration)
@torch.no_grad()
def run_partcrafter(image_path: str,
                num_parts: int = 1,
                seed: int = 0,
                num_tokens: int = 1024,
                num_inference_steps: int = 50,
                guidance_scale: float = 7.0,
                use_flash_decoder: bool = False,
                rmbg: bool = True,
                session_id = None,
                progress=gr.Progress(track_tqdm=True),):

    """
    Generate structured 3D meshes from a 2D image using the PartCrafter pipeline.

    This function takes a single 2D image as input and produces a set of part-based 3D meshes,
    using compositional latent diffusion with attention to structure and part separation.
    Optionally removes the background using a pretrained background removal model (RMBG),
    and outputs a merged object mesh.

    Args:
        image_path (str): Path to the input image file on disk.
        num_parts (int, optional): Number of distinct parts to decompose the object into. Defaults to 1.
        seed (int, optional): Random seed for reproducibility. Defaults to 0.
        num_tokens (int, optional): Number of tokens used during latent encoding. Higher values yield finer detail. Defaults to 1024.
        num_inference_steps (int, optional): Number of diffusion inference steps. More steps improve quality but increase runtime. Defaults to 50.
        guidance_scale (float, optional): Classifier-free guidance scale. Higher values emphasize adherence to conditioning. Defaults to 7.0.
        use_flash_decoder (bool, optional): Whether to use FlashAttention in the decoder for performance. Defaults to False.
        rmbg (bool, optional): Whether to apply background removal before processing. Defaults to True.
        session_id (str, optional): Optional session ID to manage export paths. If not provided, a random UUID is generated.
        progress (gr.Progress, optional): Gradio progress object for visual feedback. Automatically handled by Gradio.

    Returns:
        Tuple[str, str, str, str]: 
            - `merged_path` (str): File path to the merged full object mesh (`object.glb`).

    Notes:
        - This function utilizes HuggingFace pretrained weights for both part generation and background removal.
        - The final output includes merged model parts to visualize object structure.
        - Generation time depends on the number of parts and inference parameters.
    """

    max_num_expanded_coords = 1e9

    if session_id is None:
        session_id = uuid.uuid4().hex
        
    if rmbg:
        img_pil = prepare_image(image_path, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)
    else:
        img_pil = Image.open(image_path)

    set_seed(seed)
    start_time = time.time()
    outputs = pipe(
        image=[img_pil] * num_parts,
        attention_kwargs={"num_parts": num_parts},
        num_tokens=num_tokens,
        generator=torch.Generator(device=pipe.device).manual_seed(seed),
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        max_num_expanded_coords=max_num_expanded_coords,
        use_flash_decoder=use_flash_decoder,
    ).meshes
    duration = time.time() - start_time
    print(f"Generation time: {duration:.2f}s")

    # Ensure no None outputs
    for i, mesh in enumerate(outputs):
        if mesh is None:
            outputs[i] = trimesh.Trimesh(vertices=[[0,0,0]], faces=[[0,0,0]])


    export_dir = os.path.join(os.environ["PARTCRAFTER_PROCESSED"], session_id)

    # If it already exists, delete it (and all its contents)
    if os.path.exists(export_dir):
        shutil.rmtree(export_dir)
    
    os.makedirs(export_dir, exist_ok=True)

    parts = []
    
    for idx, mesh in enumerate(outputs):
        part = os.path.join(export_dir, f"part_{idx:02}.glb")
        mesh.export(part)
        parts.append(part)
    
    # Merge and color
    merged = get_colored_mesh_composition(outputs)
    split_mesh = explode_mesh(merged)
    
    merged_path = os.path.join(export_dir, "object.glb")
    merged.export(merged_path)

    return merged_path

def cleanup(request: gr.Request):

    sid = request.session_hash
    if sid:
        d1 = os.path.join(os.environ["PARTCRAFTER_PROCESSED"], sid)
        shutil.rmtree(d1, ignore_errors=True)
        
def start_session(request: gr.Request):

    return request.session_hash
    
def build_demo():
    css = """
        #col-container {
            margin: 0 auto;
            max-width: 1560px;
        }
        """
    theme = gr.themes.Ocean()
    
    with gr.Blocks(css=css, theme=theme) as demo:
        session_state = gr.State()
        demo.load(start_session, outputs=[session_state])

        with gr.Column(elem_id="col-container"):
            gr.HTML(
                """
                <div style="text-align: center;">
                    <p style="font-size:16px; display: inline; margin: 0;">
                        <strong>PartCrafter</strong> – Structured 3D Mesh Generation via Compositional Latent Diffusion Transformers
                    </p>
                    <a href="https://github.com/wgsxm/PartCrafter" style="display: inline-block; vertical-align: middle; margin-left: 0.5em;">
                        <img src="https://img.shields.io/badge/GitHub-Repo-blue" alt="GitHub Repo">
                    </a>
                </div>
                <div style="text-align: center;">
                    HF Space by :<a href="https://twitter.com/alexandernasa/" style="display: inline-block; vertical-align: middle; margin-left: 0.5em;">
                        <img src="https://img.shields.io/twitter/url/https/twitter.com/cloudposse.svg?style=social&label=Follow Me" alt="GitHub Repo">
                    </a>
                </div>
                """
            )
            with gr.Row():
                with gr.Column(scale=1):
                    
                    input_image = gr.Image(type="filepath", label="Input Image", height=256)
                    num_parts = gr.Slider(1, MAX_NUM_PARTS, value=4, step=1, label="Number of Parts")
                    run_button = gr.Button("Step 1 - 🧩 Craft 3D Parts", variant="primary")
                    video_button = gr.Button("Step 2 - πŸŽ₯ Generate Split Preview Gif (Optional)")
                    
                    with gr.Accordion("Advanced Settings", open=False):
                        seed = gr.Number(value=0, label="Random Seed", precision=0)
                        num_tokens = gr.Slider(256, 2048, value=1024, step=64, label="Num Tokens")
                        num_steps = gr.Slider(1, 100, value=50, step=1, label="Inference Steps")
                        guidance = gr.Slider(1.0, 20.0, value=7.0, step=0.1, label="Guidance Scale")
                        flash_decoder = gr.Checkbox(value=False, label="Use Flash Decoder")
                        remove_bg = gr.Checkbox(value=True, label="Remove Background (RMBG)")

                with gr.Column(scale=2):
                    gr.HTML(
                        """
                        <p style="opacity: 0.6; font-style: italic;">
                          The 3D Preview might take a few seconds to load the 3D model
                        </p>
                        """
                    )
                    with gr.Row():
                        output_model = gr.Model3D(label="Merged 3D Object", height=512, interactive=False)
                        video_output = gr.Image(label="Split Preview", height=512)
            with gr.Row():
                with gr.Column():
                    examples = gr.Examples(
                        
                        examples=[
                            [
                                "assets/images/np5_b81f29e567ea4db48014f89c9079e403.png", 
                                5,
                            ], 
                            [
                                "assets/images/np7_1c004909dedb4ebe8db69b4d7b077434.png", 
                                7,
                            ], 
                            [
                                "assets/images/np16_dino.png", 
                                16,
                            ], 
                            [
                                "assets/images/np13_39c0fa16ed324b54a605dcdbcd80797c.png", 
                                13,
                            ], 
                            
                        ],
                        inputs=[input_image, num_parts],
                        outputs=[output_model, video_output],
                        fn=gen_model_n_video,
                        cache_examples=True
                    )
    
            run_button.click(fn=run_partcrafter,
                             inputs=[input_image, num_parts, seed, num_tokens, num_steps,
                                     guidance, flash_decoder, remove_bg, session_state],
                             outputs=[output_model])
            video_button.click(fn=gen_video,
                             inputs=[output_model],
                             outputs=[video_output])
            
        return demo

if __name__ == "__main__":
    demo = build_demo()
    demo.unload(cleanup)
    demo.queue()
    demo.launch(mcp_server=True, ssr_mode=False)