Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,131 Bytes
f108aa8 c5402af f108aa8 c5402af f108aa8 c5402af 2a9686f 3ec8a24 d8c8548 c5402af fcfad21 f108aa8 c5402af f108aa8 1c1ff82 9177085 1c1ff82 0ae4746 1c1ff82 2a9686f 1c1ff82 9177085 ac4feba ce940a6 1c1ff82 d8c8548 f108aa8 15066eb 166aa76 15066eb f108aa8 8dd9712 f108aa8 e1a0427 2a5edd9 3ec8a24 b7bf602 3ec8a24 9df3406 b7bf602 9df3406 b7bf602 9df3406 3ec8a24 166aa76 b7bf602 166aa76 3ec8a24 f108aa8 166aa76 d37df73 b3f7f27 8dd9712 2a9686f 2d034f7 f108aa8 c1fa643 166aa76 c1fa643 166aa76 c1fa643 f108aa8 1e9e245 2a9686f f108aa8 8dd9712 f108aa8 e20f68b f108aa8 2a9686f 040b217 f108aa8 2d1dbb6 f108aa8 2d1dbb6 824b10c c9bf2bf c4a18a0 166aa76 f108aa8 2a9686f f108aa8 b3f7f27 d37f4d2 b3f7f27 2a9686f b3f7f27 794537a 165e9ba 794537a d633cbe 794537a b3f7f27 d633cbe 92bf5b8 b3f7f27 a71a547 b3f7f27 72559fa b3f7f27 51a6fa2 ac4feba 2a9686f ac4feba c9bf2bf 166aa76 92bf5b8 3533cff 92bf5b8 7124791 92bf5b8 166aa76 92bf5b8 b3f7f27 166aa76 b3f7f27 2a9686f 166aa76 b3f7f27 f108aa8 2a9686f 1948657 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
import spaces
import gradio as gr
import os
import sys
from glob import glob
import time
from typing import Any, Union
import numpy as np
import torch
import uuid
import shutil
print(f'torch version:{torch.__version__}')
import trimesh
import glob
from huggingface_hub import snapshot_download
from PIL import Image
from accelerate.utils import set_seed
import subprocess
import importlib, site, sys
# Re-discover all .pth/.egg-link files
for sitedir in site.getsitepackages():
site.addsitedir(sitedir)
# Clear caches so importlib will pick up new modules
importlib.invalidate_caches()
def sh(cmd): subprocess.check_call(cmd, shell=True)
def install_cuda_toolkit():
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.6.0/local_installers/cuda_12.6.0_560.28.03_linux.run"
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
subprocess.check_call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
subprocess.check_call(["chmod", "+x", CUDA_TOOLKIT_FILE])
subprocess.check_call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
os.environ["CUDA_HOME"],
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
)
# add for compiler header lookup
os.environ["CPATH"] = f"{os.environ['CUDA_HOME']}/include" + (
f":{os.environ['CPATH']}" if "CPATH" in os.environ else ""
)
# Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.9;9.0"
print("==> finished installation")
print("installing cuda toolkit")
install_cuda_toolkit()
print("finished")
os.environ["PARTCRAFTER_PROCESSED"] = f"{os.getcwd()}/proprocess_results"
def sh(cmd_list, extra_env=None):
env = os.environ.copy()
if extra_env:
env.update(extra_env)
subprocess.check_call(cmd_list, env=env)
# install with FORCE_CUDA=1
sh(["pip", "install", "diso"], {"FORCE_CUDA": "1"})
# sh(["pip", "install", "torch-cluster", "-f", "https://data.pyg.org/whl/torch-2.7.0+126.html"])
# tell Python to re-scan site-packages now that the egg-link exists
import importlib, site; site.addsitedir(site.getsitepackages()[0]); importlib.invalidate_caches()
from src.utils.data_utils import get_colored_mesh_composition, scene_to_parts, load_surfaces
from src.utils.render_utils import render_views_around_mesh, render_normal_views_around_mesh, make_grid_for_images_or_videos, export_renderings, explode_mesh
from src.pipelines.pipeline_partcrafter import PartCrafterPipeline
from src.utils.image_utils import prepare_image
from src.models.briarmbg import BriaRMBG
# Constants
MAX_NUM_PARTS = 16
DEVICE = "cuda"
DTYPE = torch.float16
# Download and initialize models
partcrafter_weights_dir = "pretrained_weights/PartCrafter"
rmbg_weights_dir = "pretrained_weights/RMBG-1.4"
snapshot_download(repo_id="wgsxm/PartCrafter", local_dir=partcrafter_weights_dir)
snapshot_download(repo_id="briaai/RMBG-1.4", local_dir=rmbg_weights_dir)
rmbg_net = BriaRMBG.from_pretrained(rmbg_weights_dir).to(DEVICE)
rmbg_net.eval()
pipe: PartCrafterPipeline = PartCrafterPipeline.from_pretrained(partcrafter_weights_dir).to(DEVICE, DTYPE)
def first_file_from_dir(directory, ext):
files = glob.glob(os.path.join(directory, f"*.{ext}"))
return sorted(files)[0] if files else None
def get_duration(
image_path,
num_parts,
seed,
num_tokens,
num_inference_steps,
guidance_scale,
use_flash_decoder,
rmbg,
session_id,
progress,
):
duration_seconds = 75
if num_parts > 10:
duration_seconds = 120
elif num_parts > 5:
duration_seconds = 90
return int(duration_seconds)
@spaces.GPU(duration=140)
def gen_model_n_video(image_path: str,
num_parts: int,
progress=gr.Progress(track_tqdm=True),):
model_path = run_partcrafter(image_path, num_parts=num_parts, progress=progress)
video_path = gen_video(model_path)
return model_path, video_path
@spaces.GPU()
def gen_video(model_path):
if model_path is None:
gr.Info("You must craft the 3d parts first")
return None
export_dir = os.path.dirname(model_path)
merged = trimesh.load(model_path)
preview_path = os.path.join(export_dir, "rendering.gif")
num_views = 36
radius = 4
fps = 7
rendered_images = render_views_around_mesh(
merged,
num_views=num_views,
radius=radius,
)
export_renderings(
rendered_images,
preview_path,
fps=fps,
)
return preview_path
@spaces.GPU(duration=get_duration)
@torch.no_grad()
def run_partcrafter(image_path: str,
num_parts: int = 1,
seed: int = 0,
num_tokens: int = 1024,
num_inference_steps: int = 50,
guidance_scale: float = 7.0,
use_flash_decoder: bool = False,
rmbg: bool = True,
session_id = None,
progress=gr.Progress(track_tqdm=True),):
"""
Generate structured 3D meshes from a 2D image using the PartCrafter pipeline.
This function takes a single 2D image as input and produces a set of part-based 3D meshes,
using compositional latent diffusion with attention to structure and part separation.
Optionally removes the background using a pretrained background removal model (RMBG),
and outputs a merged object mesh.
Args:
image_path (str): Path to the input image file on disk.
num_parts (int, optional): Number of distinct parts to decompose the object into. Defaults to 1.
seed (int, optional): Random seed for reproducibility. Defaults to 0.
num_tokens (int, optional): Number of tokens used during latent encoding. Higher values yield finer detail. Defaults to 1024.
num_inference_steps (int, optional): Number of diffusion inference steps. More steps improve quality but increase runtime. Defaults to 50.
guidance_scale (float, optional): Classifier-free guidance scale. Higher values emphasize adherence to conditioning. Defaults to 7.0.
use_flash_decoder (bool, optional): Whether to use FlashAttention in the decoder for performance. Defaults to False.
rmbg (bool, optional): Whether to apply background removal before processing. Defaults to True.
session_id (str, optional): Optional session ID to manage export paths. If not provided, a random UUID is generated.
progress (gr.Progress, optional): Gradio progress object for visual feedback. Automatically handled by Gradio.
Returns:
Tuple[str, str, str, str]:
- `merged_path` (str): File path to the merged full object mesh (`object.glb`).
Notes:
- This function utilizes HuggingFace pretrained weights for both part generation and background removal.
- The final output includes merged model parts to visualize object structure.
- Generation time depends on the number of parts and inference parameters.
"""
max_num_expanded_coords = 1e9
if session_id is None:
session_id = uuid.uuid4().hex
if rmbg:
img_pil = prepare_image(image_path, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)
else:
img_pil = Image.open(image_path)
set_seed(seed)
start_time = time.time()
outputs = pipe(
image=[img_pil] * num_parts,
attention_kwargs={"num_parts": num_parts},
num_tokens=num_tokens,
generator=torch.Generator(device=pipe.device).manual_seed(seed),
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
max_num_expanded_coords=max_num_expanded_coords,
use_flash_decoder=use_flash_decoder,
).meshes
duration = time.time() - start_time
print(f"Generation time: {duration:.2f}s")
# Ensure no None outputs
for i, mesh in enumerate(outputs):
if mesh is None:
outputs[i] = trimesh.Trimesh(vertices=[[0,0,0]], faces=[[0,0,0]])
export_dir = os.path.join(os.environ["PARTCRAFTER_PROCESSED"], session_id)
# If it already exists, delete it (and all its contents)
if os.path.exists(export_dir):
shutil.rmtree(export_dir)
os.makedirs(export_dir, exist_ok=True)
parts = []
for idx, mesh in enumerate(outputs):
part = os.path.join(export_dir, f"part_{idx:02}.glb")
mesh.export(part)
parts.append(part)
# Merge and color
merged = get_colored_mesh_composition(outputs)
split_mesh = explode_mesh(merged)
merged_path = os.path.join(export_dir, "object.glb")
merged.export(merged_path)
return merged_path
def cleanup(request: gr.Request):
sid = request.session_hash
if sid:
d1 = os.path.join(os.environ["PARTCRAFTER_PROCESSED"], sid)
shutil.rmtree(d1, ignore_errors=True)
def start_session(request: gr.Request):
return request.session_hash
def build_demo():
css = """
#col-container {
margin: 0 auto;
max-width: 1560px;
}
"""
theme = gr.themes.Ocean()
with gr.Blocks(css=css, theme=theme) as demo:
session_state = gr.State()
demo.load(start_session, outputs=[session_state])
with gr.Column(elem_id="col-container"):
gr.HTML(
"""
<div style="text-align: center;">
<p style="font-size:16px; display: inline; margin: 0;">
<strong>PartCrafter</strong> β Structured 3D Mesh Generation via Compositional Latent Diffusion Transformers
</p>
<a href="https://github.com/wgsxm/PartCrafter" style="display: inline-block; vertical-align: middle; margin-left: 0.5em;">
<img src="https://img.shields.io/badge/GitHub-Repo-blue" alt="GitHub Repo">
</a>
</div>
<div style="text-align: center;">
HF Space by :<a href="https://twitter.com/alexandernasa/" style="display: inline-block; vertical-align: middle; margin-left: 0.5em;">
<img src="https://img.shields.io/twitter/url/https/twitter.com/cloudposse.svg?style=social&label=Follow Me" alt="GitHub Repo">
</a>
</div>
"""
)
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(type="filepath", label="Input Image", height=256)
num_parts = gr.Slider(1, MAX_NUM_PARTS, value=4, step=1, label="Number of Parts")
run_button = gr.Button("Step 1 - π§© Craft 3D Parts", variant="primary")
video_button = gr.Button("Step 2 - π₯ Generate Split Preview Gif (Optional)")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Number(value=0, label="Random Seed", precision=0)
num_tokens = gr.Slider(256, 2048, value=1024, step=64, label="Num Tokens")
num_steps = gr.Slider(1, 100, value=50, step=1, label="Inference Steps")
guidance = gr.Slider(1.0, 20.0, value=7.0, step=0.1, label="Guidance Scale")
flash_decoder = gr.Checkbox(value=False, label="Use Flash Decoder")
remove_bg = gr.Checkbox(value=True, label="Remove Background (RMBG)")
with gr.Column(scale=2):
gr.HTML(
"""
<p style="opacity: 0.6; font-style: italic;">
The 3D Preview might take a few seconds to load the 3D model
</p>
"""
)
with gr.Row():
output_model = gr.Model3D(label="Merged 3D Object", height=512, interactive=False)
video_output = gr.Image(label="Split Preview", height=512)
with gr.Row():
with gr.Column():
examples = gr.Examples(
examples=[
[
"assets/images/np5_b81f29e567ea4db48014f89c9079e403.png",
5,
],
[
"assets/images/np7_1c004909dedb4ebe8db69b4d7b077434.png",
7,
],
[
"assets/images/np16_dino.png",
16,
],
[
"assets/images/np13_39c0fa16ed324b54a605dcdbcd80797c.png",
13,
],
],
inputs=[input_image, num_parts],
outputs=[output_model, video_output],
fn=gen_model_n_video,
cache_examples=True
)
run_button.click(fn=run_partcrafter,
inputs=[input_image, num_parts, seed, num_tokens, num_steps,
guidance, flash_decoder, remove_bg, session_state],
outputs=[output_model])
video_button.click(fn=gen_video,
inputs=[output_model],
outputs=[video_output])
return demo
if __name__ == "__main__":
demo = build_demo()
demo.unload(cleanup)
demo.queue()
demo.launch(mcp_server=True, ssr_mode=False) |