File size: 6,268 Bytes
bef5729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import argparse
import os
import sys
from glob import glob
import time
from typing import Any, Union

import numpy as np
import torch
import trimesh
from huggingface_hub import snapshot_download
from PIL import Image
from accelerate.utils import set_seed

from src.utils.data_utils import get_colored_mesh_composition, scene_to_parts, load_surfaces
from src.utils.render_utils import render_views_around_mesh, render_normal_views_around_mesh, make_grid_for_images_or_videos, export_renderings
from src.pipelines.pipeline_partcrafter import PartCrafterPipeline
from src.utils.image_utils import prepare_image
from src.models.briarmbg import BriaRMBG

@torch.no_grad()
def run_triposg(
    pipe: Any,
    image_input: Union[str, Image.Image],
    num_parts: int,
    rmbg_net: Any,
    seed: int,
    num_tokens: int = 1024,
    num_inference_steps: int = 50,
    guidance_scale: float = 7.0,
    max_num_expanded_coords: int = 1e9,
    use_flash_decoder: bool = False,
    rmbg: bool = False,
    dtype: torch.dtype = torch.float16,
    device: str = "cuda",
) -> trimesh.Scene:

    if rmbg:
        img_pil = prepare_image(image_input, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)
    else:
        img_pil = Image.open(image_input)
    start_time = time.time()
    outputs = pipe(
        image=[img_pil] * num_parts,
        attention_kwargs={"num_parts": num_parts},
        num_tokens=num_tokens,
        generator=torch.Generator(device=pipe.device).manual_seed(seed),
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        max_num_expanded_coords=max_num_expanded_coords,
        use_flash_decoder=use_flash_decoder,
    ).meshes
    end_time = time.time()
    print(f"Time elapsed: {end_time - start_time:.2f} seconds")
    for i in range(len(outputs)):
        if outputs[i] is None:
            # If the generated mesh is None (decoing error), use a dummy mesh
            outputs[i] = trimesh.Trimesh(vertices=[[0, 0, 0]], faces=[[0, 0, 0]])
    return outputs, img_pil

MAX_NUM_PARTS = 16

if __name__ == "__main__":
    device = "cuda"
    dtype = torch.float16

    parser = argparse.ArgumentParser()
    parser.add_argument("--image_path", type=str, required=True)
    parser.add_argument("--num_parts", type=int, required=True, help="number of parts to generate")
    parser.add_argument("--output_dir", type=str, default="./results")
    parser.add_argument("--tag", type=str, default=None)
    parser.add_argument("--seed", type=int, default=0)
    parser.add_argument("--num_tokens", type=int, default=1024)
    parser.add_argument("--num_inference_steps", type=int, default=50)
    parser.add_argument("--guidance_scale", type=float, default=7.0)
    parser.add_argument("--max_num_expanded_coords", type=int, default=1e9)
    parser.add_argument("--use_flash_decoder", action="store_true")
    parser.add_argument("--rmbg", action="store_true")
    parser.add_argument("--render", action="store_true")
    args = parser.parse_args()

    assert 1 <= args.num_parts <= MAX_NUM_PARTS, f"num_parts must be in [1, {MAX_NUM_PARTS}]"

    # download pretrained weights
    partcrafter_weights_dir = "pretrained_weights/PartCrafter"
    rmbg_weights_dir = "pretrained_weights/RMBG-1.4"
    snapshot_download(repo_id="wgsxm/PartCrafter", local_dir=partcrafter_weights_dir)
    snapshot_download(repo_id="briaai/RMBG-1.4", local_dir=rmbg_weights_dir)

    # init rmbg model for background removal
    rmbg_net = BriaRMBG.from_pretrained(rmbg_weights_dir).to(device)
    rmbg_net.eval() 

    # init tripoSG pipeline
    pipe: PartCrafterPipeline = PartCrafterPipeline.from_pretrained(partcrafter_weights_dir).to(device, dtype)

    set_seed(args.seed)

    # run inference
    outputs, processed_image = run_triposg(
        pipe,
        image_input=args.image_path,
        num_parts=args.num_parts,
        rmbg_net=rmbg_net,
        seed=args.seed,
        num_tokens=args.num_tokens,
        num_inference_steps=args.num_inference_steps,
        guidance_scale=args.guidance_scale,
        max_num_expanded_coords=args.max_num_expanded_coords,
        use_flash_decoder=args.use_flash_decoder,
        rmbg=args.rmbg,
        dtype=dtype,
        device=device,
    )

    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
    
    if args.tag is None:
        args.tag = time.strftime("%Y%m%d_%H_%M_%S")
    
    export_dir = os.path.join(args.output_dir, args.tag)
    os.makedirs(export_dir, exist_ok=True)

    for i, mesh in enumerate(outputs):
        mesh.export(os.path.join(export_dir, f"part_{i:02}.glb"))
    
    merged_mesh = get_colored_mesh_composition(outputs)
    merged_mesh.export(os.path.join(export_dir, "object.glb"))
    print(f"Generated {len(outputs)} parts and saved to {export_dir}")

    if args.render:
        print("Start rendering...")
        num_views = 36
        radius = 4
        fps = 18
        rendered_images = render_views_around_mesh(
            merged_mesh,
            num_views=num_views,
            radius=radius,
        )
        rendered_normals = render_normal_views_around_mesh(
            merged_mesh,
            num_views=num_views,
            radius=radius,
        )
        rendered_grids = make_grid_for_images_or_videos(
            [
                [processed_image] * num_views,
                rendered_images,
                rendered_normals,
            ], 
            nrow=3
        )
        export_renderings(
            rendered_images,
            os.path.join(export_dir, "rendering.gif"),
            fps=fps,
        )
        export_renderings(
            rendered_normals,
            os.path.join(export_dir, "rendering_normal.gif"),
            fps=fps,
        )
        export_renderings(
            rendered_grids,
            os.path.join(export_dir, "rendering_grid.gif"),
            fps=fps,
        )

        rendered_image, rendered_normal, rendered_grid = rendered_images[0], rendered_normals[0], rendered_grids[0]
        rendered_image.save(os.path.join(export_dir, "rendering.png"))
        rendered_normal.save(os.path.join(export_dir, "rendering_normal.png"))
        rendered_grid.save(os.path.join(export_dir, "rendering_grid.png"))
        print("Rendering done.")