Spaces:
Running
on
Zero
Running
on
Zero
File size: 42,817 Bytes
bef5729 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 |
import warnings
warnings.filterwarnings("ignore") # ignore all warnings
import diffusers.utils.logging as diffusion_logging
diffusion_logging.set_verbosity_error() # ignore diffusers warnings
from src.utils.typing_utils import *
import os
import argparse
import logging
import time
import math
import gc
from packaging import version
import trimesh
from PIL import Image
import numpy as np
import wandb
from tqdm import tqdm
import torch
import torch.nn.functional as tF
import accelerate
from accelerate import Accelerator
from accelerate.logging import get_logger as get_accelerate_logger
from accelerate import DataLoaderConfiguration, DeepSpeedPlugin
from diffusers.training_utils import (
compute_density_for_timestep_sampling,
compute_loss_weighting_for_sd3
)
from transformers import (
BitImageProcessor,
Dinov2Model,
)
from src.schedulers import RectifiedFlowScheduler
from src.models.autoencoders import TripoSGVAEModel
from src.models.transformers import PartCrafterDiTModel
from src.pipelines.pipeline_partcrafter import PartCrafterPipeline
from src.datasets import (
ObjaversePartDataset,
BatchedObjaversePartDataset,
MultiEpochsDataLoader,
yield_forever
)
from src.utils.data_utils import get_colored_mesh_composition
from src.utils.train_utils import (
MyEMAModel,
get_configs,
get_optimizer,
get_lr_scheduler,
save_experiment_params,
save_model_architecture,
)
from src.utils.render_utils import (
render_views_around_mesh,
render_normal_views_around_mesh,
make_grid_for_images_or_videos,
export_renderings
)
from src.utils.metric_utils import compute_cd_and_f_score_in_training
def main():
PROJECT_NAME = "PartCrafter"
parser = argparse.ArgumentParser(
description="Train a diffusion model for 3D object generation",
)
parser.add_argument(
"--config",
type=str,
required=True,
help="Path to the config file"
)
parser.add_argument(
"--tag",
type=str,
default=None,
help="Tag that refers to the current experiment"
)
parser.add_argument(
"--output_dir",
type=str,
default="output",
help="Path to the output directory"
)
parser.add_argument(
"--resume_from_iter",
type=int,
default=None,
help="The iteration to load the checkpoint from"
)
parser.add_argument(
"--seed",
type=int,
default=0,
help="Seed for the PRNG"
)
parser.add_argument(
"--offline_wandb",
action="store_true",
help="Use offline WandB for experiment tracking"
)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="The max iteration step for training"
)
parser.add_argument(
"--max_val_steps",
type=int,
default=2,
help="The max iteration step for validation"
)
parser.add_argument(
"--num_workers",
type=int,
default=32,
help="The number of processed spawned by the batch provider"
)
parser.add_argument(
"--pin_memory",
action="store_true",
help="Pin memory for the data loader"
)
parser.add_argument(
"--use_ema",
action="store_true",
help="Use EMA model for training"
)
parser.add_argument(
"--scale_lr",
action="store_true",
help="Scale lr with total batch size (base batch size: 256)"
)
parser.add_argument(
"--max_grad_norm",
type=float,
default=1.,
help="Max gradient norm for gradient clipping"
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass"
)
parser.add_argument(
"--mixed_precision",
type=str,
default="fp16",
choices=["no", "fp16", "bf16"],
help="Type of mixed precision training"
)
parser.add_argument(
"--allow_tf32",
action="store_true",
help="Enable TF32 for faster training on Ampere GPUs"
)
parser.add_argument(
"--val_guidance_scales",
type=list,
nargs="+",
default=[7.0],
help="CFG scale used for validation"
)
parser.add_argument(
"--use_deepspeed",
action="store_true",
help="Use DeepSpeed for training"
)
parser.add_argument(
"--zero_stage",
type=int,
default=1,
choices=[1, 2, 3], # https://huggingface.co/docs/accelerate/usage_guides/deepspeed
help="ZeRO stage type for DeepSpeed"
)
parser.add_argument(
"--from_scratch",
action="store_true",
help="Train from scratch"
)
parser.add_argument(
"--load_pretrained_model",
type=str,
default=None,
help="Tag of a pretrained PartCrafterDiTModel in this project"
)
parser.add_argument(
"--load_pretrained_model_ckpt",
type=int,
default=-1,
help="Iteration of the pretrained PartCrafterDiTModel checkpoint"
)
# Parse the arguments
args, extras = parser.parse_known_args()
# Parse the config file
configs = get_configs(args.config, extras) # change yaml configs by `extras`
args.val_guidance_scales = [float(x[0]) if isinstance(x, list) else float(x) for x in args.val_guidance_scales]
if args.max_val_steps > 0:
# If enable validation, the max_val_steps must be a multiple of nrow
# Always keep validation batchsize 1
divider = configs["val"]["nrow"]
args.max_val_steps = max(args.max_val_steps, divider)
if args.max_val_steps % divider != 0:
args.max_val_steps = (args.max_val_steps // divider + 1) * divider
# Create an experiment directory using the `tag`
if args.tag is None:
args.tag = time.strftime("%Y%m%d_%H_%M_%S")
exp_dir = os.path.join(args.output_dir, args.tag)
ckpt_dir = os.path.join(exp_dir, "checkpoints")
eval_dir = os.path.join(exp_dir, "evaluations")
os.makedirs(ckpt_dir, exist_ok=True)
os.makedirs(eval_dir, exist_ok=True)
# Initialize the logger
logging.basicConfig(
format="%(asctime)s - %(message)s",
datefmt="%Y/%m/%d %H:%M:%S",
level=logging.INFO
)
logger = get_accelerate_logger(__name__, log_level="INFO")
file_handler = logging.FileHandler(os.path.join(exp_dir, "log.txt")) # output to file
file_handler.setFormatter(logging.Formatter(
fmt="%(asctime)s - %(message)s",
datefmt="%Y/%m/%d %H:%M:%S"
))
logger.logger.addHandler(file_handler)
logger.logger.propagate = True # propagate to the root logger (console)
# Set DeepSpeed config
if args.use_deepspeed:
deepspeed_plugin = DeepSpeedPlugin(
gradient_accumulation_steps=args.gradient_accumulation_steps,
gradient_clipping=args.max_grad_norm,
zero_stage=int(args.zero_stage),
offload_optimizer_device="cpu", # hard-coded here, TODO: make it configurable
)
else:
deepspeed_plugin = None
# Initialize the accelerator
accelerator = Accelerator(
project_dir=exp_dir,
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
split_batches=False, # batch size per GPU
dataloader_config=DataLoaderConfiguration(non_blocking=args.pin_memory),
deepspeed_plugin=deepspeed_plugin,
)
logger.info(f"Accelerator state:\n{accelerator.state}\n")
# Set the random seed
if args.seed >= 0:
accelerate.utils.set_seed(args.seed)
logger.info(f"You have chosen to seed([{args.seed}]) the experiment [{args.tag}]\n")
# Enable TF32 for faster training on Ampere GPUs
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
train_dataset = BatchedObjaversePartDataset(
configs=configs,
batch_size=configs["train"]["batch_size_per_gpu"],
is_main_process=accelerator.is_main_process,
shuffle=True,
training=True,
)
val_dataset = ObjaversePartDataset(
configs=configs,
training=False,
)
train_loader = MultiEpochsDataLoader(
train_dataset,
batch_size=configs["train"]["batch_size_per_gpu"],
num_workers=args.num_workers,
drop_last=True,
pin_memory=args.pin_memory,
collate_fn=train_dataset.collate_fn,
)
val_loader = MultiEpochsDataLoader(
val_dataset,
batch_size=configs["val"]["batch_size_per_gpu"],
num_workers=args.num_workers,
drop_last=True,
pin_memory=args.pin_memory,
)
random_val_loader = MultiEpochsDataLoader(
val_dataset,
batch_size=configs["val"]["batch_size_per_gpu"],
shuffle=True,
num_workers=args.num_workers,
drop_last=True,
pin_memory=args.pin_memory,
)
logger.info(f"Loaded [{len(train_dataset)}] training samples and [{len(val_dataset)}] validation samples\n")
# Compute the effective batch size and scale learning rate
total_batch_size = configs["train"]["batch_size_per_gpu"] * \
accelerator.num_processes * args.gradient_accumulation_steps
configs["train"]["total_batch_size"] = total_batch_size
if args.scale_lr:
configs["optimizer"]["lr"] *= (total_batch_size / 256)
configs["lr_scheduler"]["max_lr"] = configs["optimizer"]["lr"]
# Initialize the model
logger.info("Initializing the model...")
vae = TripoSGVAEModel.from_pretrained(
configs["model"]["pretrained_model_name_or_path"],
subfolder="vae"
)
feature_extractor_dinov2 = BitImageProcessor.from_pretrained(
configs["model"]["pretrained_model_name_or_path"],
subfolder="feature_extractor_dinov2"
)
image_encoder_dinov2 = Dinov2Model.from_pretrained(
configs["model"]["pretrained_model_name_or_path"],
subfolder="image_encoder_dinov2"
)
enable_part_embedding = configs["model"]["transformer"].get("enable_part_embedding", True)
enable_local_cross_attn = configs["model"]["transformer"].get("enable_local_cross_attn", True)
enable_global_cross_attn = configs["model"]["transformer"].get("enable_global_cross_attn", True)
global_attn_block_ids = configs["model"]["transformer"].get("global_attn_block_ids", None)
if global_attn_block_ids is not None:
global_attn_block_ids = list(global_attn_block_ids)
global_attn_block_id_range = configs["model"]["transformer"].get("global_attn_block_id_range", None)
if global_attn_block_id_range is not None:
global_attn_block_id_range = list(global_attn_block_id_range)
if args.from_scratch:
logger.info(f"Initialize PartCrafterDiTModel from scratch\n")
transformer = PartCrafterDiTModel.from_config(
os.path.join(
configs["model"]["pretrained_model_name_or_path"],
"transformer"
),
enable_part_embedding=enable_part_embedding,
enable_local_cross_attn=enable_local_cross_attn,
enable_global_cross_attn=enable_global_cross_attn,
global_attn_block_ids=global_attn_block_ids,
global_attn_block_id_range=global_attn_block_id_range,
)
elif args.load_pretrained_model is None:
logger.info(f"Load pretrained TripoSGDiTModel to initialize PartCrafterDiTModel from [{configs['model']['pretrained_model_name_or_path']}]\n")
transformer, loading_info = PartCrafterDiTModel.from_pretrained(
configs["model"]["pretrained_model_name_or_path"],
subfolder="transformer",
low_cpu_mem_usage=False,
output_loading_info=True,
enable_part_embedding=enable_part_embedding,
enable_local_cross_attn=enable_local_cross_attn,
enable_global_cross_attn=enable_global_cross_attn,
global_attn_block_ids=global_attn_block_ids,
global_attn_block_id_range=global_attn_block_id_range,
)
else:
logger.info(f"Load PartCrafterDiTModel EMA checkpoint from [{args.load_pretrained_model}] iteration [{args.load_pretrained_model_ckpt:06d}]\n")
path = os.path.join(
args.output_dir,
args.load_pretrained_model,
"checkpoints",
f"{args.load_pretrained_model_ckpt:06d}"
)
transformer, loading_info = PartCrafterDiTModel.from_pretrained(
path,
subfolder="transformer_ema",
low_cpu_mem_usage=False,
output_loading_info=True,
enable_part_embedding=enable_part_embedding,
enable_local_cross_attn=enable_local_cross_attn,
enable_global_cross_attn=enable_global_cross_attn,
global_attn_block_ids=global_attn_block_ids,
global_attn_block_id_range=global_attn_block_id_range,
)
if not args.from_scratch:
for v in loading_info.values():
if v and len(v) > 0:
logger.info(f"Loading info of PartCrafterDiTModel: {loading_info}\n")
break
noise_scheduler = RectifiedFlowScheduler.from_pretrained(
configs["model"]["pretrained_model_name_or_path"],
subfolder="scheduler"
)
if args.use_ema:
ema_transformer = MyEMAModel(
transformer.parameters(),
model_cls=PartCrafterDiTModel,
model_config=transformer.config,
**configs["train"]["ema_kwargs"]
)
# Freeze VAE and image encoder
vae.requires_grad_(False)
image_encoder_dinov2.requires_grad_(False)
vae.eval()
image_encoder_dinov2.eval()
trainable_modules = configs["train"].get("trainable_modules", None)
if trainable_modules is None:
transformer.requires_grad_(True)
else:
trainable_module_names = []
transformer.requires_grad_(False)
for name, module in transformer.named_modules():
for module_name in tuple(trainable_modules.split(",")):
if module_name in name:
for params in module.parameters():
params.requires_grad = True
trainable_module_names.append(name)
logger.info(f"Trainable parameter names: {trainable_module_names}\n")
# transformer.enable_xformers_memory_efficient_attention() # use `tF.scaled_dot_product_attention` instead
# `accelerate` 0.16.0 will have better support for customized saving
if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
# Create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
if accelerator.is_main_process:
if args.use_ema:
ema_transformer.save_pretrained(os.path.join(output_dir, "transformer_ema"))
for i, model in enumerate(models):
model.save_pretrained(os.path.join(output_dir, "transformer"))
# Make sure to pop weight so that corresponding model is not saved again
if weights:
weights.pop()
def load_model_hook(models, input_dir):
if args.use_ema:
load_model = MyEMAModel.from_pretrained(os.path.join(input_dir, "transformer_ema"), PartCrafterDiTModel)
ema_transformer.load_state_dict(load_model.state_dict())
ema_transformer.to(accelerator.device)
del load_model
for _ in range(len(models)):
# Pop models so that they are not loaded again
model = models.pop()
# Load diffusers style into model
load_model = PartCrafterDiTModel.from_pretrained(input_dir, subfolder="transformer")
model.register_to_config(**load_model.config)
model.load_state_dict(load_model.state_dict())
del load_model
accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook)
if configs["train"]["grad_checkpoint"]:
transformer.enable_gradient_checkpointing()
# Initialize the optimizer and learning rate scheduler
logger.info("Initializing the optimizer and learning rate scheduler...\n")
name_lr_mult = configs["train"].get("name_lr_mult", None)
lr_mult = configs["train"].get("lr_mult", 1.0)
params, params_lr_mult, names_lr_mult = [], [], []
for name, param in transformer.named_parameters():
if name_lr_mult is not None:
for k in name_lr_mult.split(","):
if k in name:
params_lr_mult.append(param)
names_lr_mult.append(name)
if name not in names_lr_mult:
params.append(param)
else:
params.append(param)
optimizer = get_optimizer(
params=[
{"params": params, "lr": configs["optimizer"]["lr"]},
{"params": params_lr_mult, "lr": configs["optimizer"]["lr"] * lr_mult}
],
**configs["optimizer"]
)
if name_lr_mult is not None:
logger.info(f"Learning rate x [{lr_mult}] parameter names: {names_lr_mult}\n")
configs["lr_scheduler"]["total_steps"] = configs["train"]["epochs"] * math.ceil(
len(train_loader) // accelerator.num_processes / args.gradient_accumulation_steps) # only account updated steps
configs["lr_scheduler"]["total_steps"] *= accelerator.num_processes # for lr scheduler setting
if "num_warmup_steps" in configs["lr_scheduler"]:
configs["lr_scheduler"]["num_warmup_steps"] *= accelerator.num_processes # for lr scheduler setting
lr_scheduler = get_lr_scheduler(optimizer=optimizer, **configs["lr_scheduler"])
configs["lr_scheduler"]["total_steps"] //= accelerator.num_processes # reset for multi-gpu
if "num_warmup_steps" in configs["lr_scheduler"]:
configs["lr_scheduler"]["num_warmup_steps"] //= accelerator.num_processes # reset for multi-gpu
# Prepare everything with `accelerator`
transformer, optimizer, lr_scheduler, train_loader, val_loader, random_val_loader = accelerator.prepare(
transformer, optimizer, lr_scheduler, train_loader, val_loader, random_val_loader
)
# Set classes explicitly for everything
transformer: DistributedDataParallel
optimizer: AcceleratedOptimizer
lr_scheduler: AcceleratedScheduler
train_loader: DataLoaderShard
val_loader: DataLoaderShard
random_val_loader: DataLoaderShard
if args.use_ema:
ema_transformer.to(accelerator.device)
# For mixed precision training we cast all non-trainable weigths to half-precision
# as these weights are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move `vae` and `image_encoder_dinov2` to gpu and cast to `weight_dtype`
vae.to(accelerator.device, dtype=weight_dtype)
image_encoder_dinov2.to(accelerator.device, dtype=weight_dtype)
# Training configs after distribution and accumulation setup
updated_steps_per_epoch = math.ceil(len(train_loader) / args.gradient_accumulation_steps)
total_updated_steps = configs["lr_scheduler"]["total_steps"]
if args.max_train_steps is None:
args.max_train_steps = total_updated_steps
assert configs["train"]["epochs"] * updated_steps_per_epoch == total_updated_steps
if accelerator.num_processes > 1 and accelerator.is_main_process:
print()
accelerator.wait_for_everyone()
logger.info(f"Total batch size: [{total_batch_size}]")
logger.info(f"Learning rate: [{configs['optimizer']['lr']}]")
logger.info(f"Gradient Accumulation steps: [{args.gradient_accumulation_steps}]")
logger.info(f"Total epochs: [{configs['train']['epochs']}]")
logger.info(f"Total steps: [{total_updated_steps}]")
logger.info(f"Steps for updating per epoch: [{updated_steps_per_epoch}]")
logger.info(f"Steps for validation: [{len(val_loader)}]\n")
# (Optional) Load checkpoint
global_update_step = 0
if args.resume_from_iter is not None:
if args.resume_from_iter < 0:
args.resume_from_iter = int(sorted(os.listdir(ckpt_dir))[-1])
logger.info(f"Load checkpoint from iteration [{args.resume_from_iter}]\n")
# Load everything
if version.parse(torch.__version__) >= version.parse("2.4.0"):
torch.serialization.add_safe_globals([
int, list, dict,
defaultdict,
Any,
DictConfig, ListConfig, Metadata, ContainerMetadata, AnyNode
]) # avoid deserialization error when loading optimizer state
accelerator.load_state(os.path.join(ckpt_dir, f"{args.resume_from_iter:06d}")) # torch < 2.4.0 here for `weights_only=False`
global_update_step = int(args.resume_from_iter)
# Save all experimental parameters and model architecture of this run to a file (args and configs)
if accelerator.is_main_process:
exp_params = save_experiment_params(args, configs, exp_dir)
save_model_architecture(accelerator.unwrap_model(transformer), exp_dir)
# WandB logger
if accelerator.is_main_process:
if args.offline_wandb:
os.environ["WANDB_MODE"] = "offline"
wandb.init(
project=PROJECT_NAME, name=args.tag,
config=exp_params, dir=exp_dir,
resume=True
)
# Wandb artifact for logging experiment information
arti_exp_info = wandb.Artifact(args.tag, type="exp_info")
arti_exp_info.add_file(os.path.join(exp_dir, "params.yaml"))
arti_exp_info.add_file(os.path.join(exp_dir, "model.txt"))
arti_exp_info.add_file(os.path.join(exp_dir, "log.txt")) # only save the log before training
wandb.log_artifact(arti_exp_info)
def get_sigmas(timesteps: Tensor, n_dim: int, dtype=torch.float32):
sigmas = noise_scheduler.sigmas.to(dtype=dtype, device=accelerator.device)
schedule_timesteps = noise_scheduler.timesteps.to(accelerator.device)
timesteps = timesteps.to(accelerator.device)
step_indices = [(schedule_timesteps == t).nonzero()[0].item() for t in timesteps]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < n_dim:
sigma = sigma.unsqueeze(-1)
return sigma
# Start training
if accelerator.is_main_process:
print()
logger.info(f"Start training into {exp_dir}\n")
logger.logger.propagate = False # not propagate to the root logger (console)
progress_bar = tqdm(
range(total_updated_steps),
initial=global_update_step,
desc="Training",
ncols=125,
disable=not accelerator.is_main_process
)
for batch in yield_forever(train_loader):
if global_update_step == args.max_train_steps:
progress_bar.close()
logger.logger.propagate = True # propagate to the root logger (console)
if accelerator.is_main_process:
wandb.finish()
logger.info("Training finished!\n")
return
transformer.train()
with accelerator.accumulate(transformer):
images = batch["images"] # [N, H, W, 3]
with torch.no_grad():
images = feature_extractor_dinov2(images=images, return_tensors="pt").pixel_values
images = images.to(device=accelerator.device, dtype=weight_dtype)
with torch.no_grad():
image_embeds = image_encoder_dinov2(images).last_hidden_state
negative_image_embeds = torch.zeros_like(image_embeds)
part_surfaces = batch["part_surfaces"] # [N, P, 6]
part_surfaces = part_surfaces.to(device=accelerator.device, dtype=weight_dtype)
num_parts = batch["num_parts"] # [M, ] The shape of num_parts is not fixed
num_objects = num_parts.shape[0] # M
with torch.no_grad():
latents = vae.encode(
part_surfaces,
**configs["model"]["vae"]
).latent_dist.sample()
noise = torch.randn_like(latents)
# For weighting schemes where we sample timesteps non-uniformly
u = compute_density_for_timestep_sampling(
weighting_scheme=configs["train"]["weighting_scheme"],
batch_size=num_objects,
logit_mean=configs["train"]["logit_mean"],
logit_std=configs["train"]["logit_std"],
mode_scale=configs["train"]["mode_scale"],
)
indices = (u * noise_scheduler.config.num_train_timesteps).long()
timesteps = noise_scheduler.timesteps[indices].to(accelerator.device) # [M, ]
# Repeat the timesteps for each part
timesteps = timesteps.repeat_interleave(num_parts) # [N, ]
sigmas = get_sigmas(timesteps, len(latents.shape), weight_dtype)
latent_model_input = noisy_latents = (1. - sigmas) * latents + sigmas * noise
if configs["train"]["cfg_dropout_prob"] > 0:
# We use the same dropout mask for the same part
dropout_mask = torch.rand(num_objects, device=accelerator.device) < configs["train"]["cfg_dropout_prob"] # [M, ]
dropout_mask = dropout_mask.repeat_interleave(num_parts) # [N, ]
if dropout_mask.any():
image_embeds[dropout_mask] = negative_image_embeds[dropout_mask]
model_pred = transformer(
hidden_states=latent_model_input,
timestep=timesteps,
encoder_hidden_states=image_embeds,
attention_kwargs={"num_parts": num_parts}
).sample
if configs["train"]["training_objective"] == "x0": # Section 5 of https://arxiv.org/abs/2206.00364
model_pred = model_pred * (-sigmas) + noisy_latents # predicted x_0
target = latents
elif configs["train"]["training_objective"] == 'v': # flow matching
target = noise - latents
elif configs["train"]["training_objective"] == '-v': # reverse flow matching
# The training objective for TripoSG is the reverse of the flow matching objective.
# It uses "different directions", i.e., the negative velocity.
# This is probably a mistake in engineering, not very harmful.
# In TripoSG's rectified flow scheduler, prev_sample = sample + (sigma - sigma_next) * model_output
# See TripoSG's scheduler https://github.com/VAST-AI-Research/TripoSG/blob/main/triposg/schedulers/scheduling_rectified_flow.py#L296
# While in diffusers's flow matching scheduler, prev_sample = sample + (sigma_next - sigma) * model_output
# See https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py#L454
target = latents - noise
else:
raise ValueError(f"Unknown training objective [{configs['train']['training_objective']}]")
# For these weighting schemes use a uniform timestep sampling, so post-weight the loss
weighting = compute_loss_weighting_for_sd3(
configs["train"]["weighting_scheme"],
sigmas
)
loss = weighting * tF.mse_loss(model_pred.float(), target.float(), reduction="none")
loss = loss.mean(dim=list(range(1, len(loss.shape))))
# Backpropagate
accelerator.backward(loss.mean())
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(transformer.parameters(), args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
# Gather the losses across all processes for logging (if we use distributed training)
loss = accelerator.gather(loss.detach()).mean()
logs = {
"loss": loss.item(),
"lr": lr_scheduler.get_last_lr()[0]
}
if args.use_ema:
ema_transformer.step(transformer.parameters())
logs.update({"ema": ema_transformer.cur_decay_value})
progress_bar.set_postfix(**logs)
progress_bar.update(1)
global_update_step += 1
logger.info(
f"[{global_update_step:06d} / {total_updated_steps:06d}] " +
f"loss: {logs['loss']:.4f}, lr: {logs['lr']:.2e}" +
f", ema: {logs['ema']:.4f}" if args.use_ema else ""
)
# Log the training progress
if (
global_update_step % configs["train"]["log_freq"] == 0
or global_update_step == 1
or global_update_step % updated_steps_per_epoch == 0 # last step of an epoch
):
if accelerator.is_main_process:
wandb.log({
"training/loss": logs["loss"],
"training/lr": logs["lr"],
}, step=global_update_step)
if args.use_ema:
wandb.log({
"training/ema": logs["ema"]
}, step=global_update_step)
# Save checkpoint
if (
global_update_step % configs["train"]["save_freq"] == 0 # 1. every `save_freq` steps
or global_update_step % (configs["train"]["save_freq_epoch"] * updated_steps_per_epoch) == 0 # 2. every `save_freq_epoch` epochs
or global_update_step == total_updated_steps # 3. last step of an epoch
# or global_update_step == 1 # 4. first step
):
gc.collect()
if accelerator.distributed_type == accelerate.utils.DistributedType.DEEPSPEED:
# DeepSpeed requires saving weights on every device; saving weights only on the main process would cause issues
accelerator.save_state(os.path.join(ckpt_dir, f"{global_update_step:06d}"))
elif accelerator.is_main_process:
accelerator.save_state(os.path.join(ckpt_dir, f"{global_update_step:06d}"))
accelerator.wait_for_everyone() # ensure all processes have finished saving
gc.collect()
# Evaluate on the validation set
if args.max_val_steps > 0 and (
(global_update_step % configs["train"]["early_eval_freq"] == 0 and global_update_step < configs["train"]["early_eval"]) # 1. more frequently at the beginning
or global_update_step % configs["train"]["eval_freq"] == 0 # 2. every `eval_freq` steps
or global_update_step % (configs["train"]["eval_freq_epoch"] * updated_steps_per_epoch) == 0 # 3. every `eval_freq_epoch` epochs
or global_update_step == total_updated_steps # 4. last step of an epoch
or global_update_step == 1 # 5. first step
):
# Use EMA parameters for evaluation
if args.use_ema:
# Store the Transformer parameters temporarily and load the EMA parameters to perform inference
ema_transformer.store(transformer.parameters())
ema_transformer.copy_to(transformer.parameters())
transformer.eval()
log_validation(
val_loader, random_val_loader,
feature_extractor_dinov2, image_encoder_dinov2,
vae, transformer,
global_update_step, eval_dir,
accelerator, logger,
args, configs
)
if args.use_ema:
# Switch back to the original Transformer parameters
ema_transformer.restore(transformer.parameters())
torch.cuda.empty_cache()
gc.collect()
@torch.no_grad()
def log_validation(
dataloader, random_dataloader,
feature_extractor_dinov2, image_encoder_dinov2,
vae, transformer,
global_step, eval_dir,
accelerator, logger,
args, configs
):
val_noise_scheduler = RectifiedFlowScheduler.from_pretrained(
configs["model"]["pretrained_model_name_or_path"],
subfolder="scheduler"
)
pipeline = PartCrafterPipeline(
vae=vae,
transformer=accelerator.unwrap_model(transformer),
scheduler=val_noise_scheduler,
feature_extractor_dinov2=feature_extractor_dinov2,
image_encoder_dinov2=image_encoder_dinov2,
)
pipeline.set_progress_bar_config(disable=True)
# pipeline.enable_xformers_memory_efficient_attention()
if args.seed >= 0:
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)
else:
generator = None
val_progress_bar = tqdm(
range(len(dataloader)) if args.max_val_steps is None else range(args.max_val_steps),
desc=f"Validation [{global_step:06d}]",
ncols=125,
disable=not accelerator.is_main_process
)
medias_dictlist, metrics_dictlist = defaultdict(list), defaultdict(list)
val_dataloder, random_val_dataloader = yield_forever(dataloader), yield_forever(random_dataloader)
val_step = 0
while val_step < args.max_val_steps:
if val_step < args.max_val_steps // 2:
# fix the first half
batch = next(val_dataloder)
else:
# randomly sample the next batch
batch = next(random_val_dataloader)
images = batch["images"]
if len(images.shape) == 5:
images = images[0] # (1, N, H, W, 3) -> (N, H, W, 3)
images = [Image.fromarray(image) for image in images.cpu().numpy()]
part_surfaces = batch["part_surfaces"].cpu().numpy()
if len(part_surfaces.shape) == 4:
part_surfaces = part_surfaces[0] # (1, N, P, 6) -> (N, P, 6)
N = len(images)
val_progress_bar.set_postfix(
{"num_parts": N}
)
with torch.autocast("cuda", torch.float16):
for guidance_scale in sorted(args.val_guidance_scales):
pred_part_meshes = pipeline(
images,
num_inference_steps=configs['val']['num_inference_steps'],
num_tokens=configs['model']['vae']['num_tokens'],
guidance_scale=guidance_scale,
attention_kwargs={"num_parts": N},
generator=generator,
max_num_expanded_coords=configs['val']['max_num_expanded_coords'],
use_flash_decoder=configs['val']['use_flash_decoder'],
).meshes
# Save the generated meshes
if accelerator.is_main_process:
local_eval_dir = os.path.join(eval_dir, f"{global_step:06d}", f"guidance_scale_{guidance_scale:.1f}")
os.makedirs(local_eval_dir, exist_ok=True)
rendered_images_list, rendered_normals_list = [], []
# 1. save the gt image
images[0].save(os.path.join(local_eval_dir, f"{val_step:04d}.png"))
# 2. save the generated part meshes
for n in range(N):
if pred_part_meshes[n] is None:
# If the generated mesh is None (decoing error), use a dummy mesh
pred_part_meshes[n] = trimesh.Trimesh(vertices=[[0, 0, 0]], faces=[[0, 0, 0]])
pred_part_meshes[n].export(os.path.join(local_eval_dir, f"{val_step:04d}_{n:02d}.glb"))
# 3. render the generated mesh and save the rendered images
pred_mesh = get_colored_mesh_composition(pred_part_meshes)
rendered_images: List[Image.Image] = render_views_around_mesh(
pred_mesh,
num_views=configs['val']['rendering']['num_views'],
radius=configs['val']['rendering']['radius'],
)
rendered_normals: List[Image.Image] = render_normal_views_around_mesh(
pred_mesh,
num_views=configs['val']['rendering']['num_views'],
radius=configs['val']['rendering']['radius'],
)
export_renderings(
rendered_images,
os.path.join(local_eval_dir, f"{val_step:04d}.gif"),
fps=configs['val']['rendering']['fps']
)
export_renderings(
rendered_normals,
os.path.join(local_eval_dir, f"{val_step:04d}_normals.gif"),
fps=configs['val']['rendering']['fps']
)
rendered_images_list.append(rendered_images)
rendered_normals_list.append(rendered_normals)
medias_dictlist[f"guidance_scale_{guidance_scale:.1f}/gt_image"] += [images[0]] # List[Image.Image] TODO: support batch size > 1
medias_dictlist[f"guidance_scale_{guidance_scale:.1f}/pred_rendered_images"] += rendered_images_list # List[List[Image.Image]]
medias_dictlist[f"guidance_scale_{guidance_scale:.1f}/pred_rendered_normals"] += rendered_normals_list # List[List[Image.Image]]
################################ Compute generation metrics ################################
parts_chamfer_distances, parts_f_scores = [], []
for n in range(N):
# gt_part_surface = part_surfaces[n]
# pred_part_mesh = pred_part_meshes[n]
# if pred_part_mesh is None:
# # If the generated mesh is None (decoing error), use a dummy mesh
# pred_part_mesh = trimesh.Trimesh(vertices=[[0, 0, 0]], faces=[[0, 0, 0]])
# part_cd, part_f = compute_cd_and_f_score_in_training(
# gt_part_surface, pred_part_mesh,
# num_samples=configs['val']['metric']['cd_num_samples'],
# threshold=configs['val']['metric']['f1_score_threshold'],
# metric=configs['val']['metric']['cd_metric']
# )
# # avoid nan
# part_cd = configs['val']['metric']['default_cd'] if np.isnan(part_cd) else part_cd
# part_f = configs['val']['metric']['default_f1'] if np.isnan(part_f) else part_f
# parts_chamfer_distances.append(part_cd)
# parts_f_scores.append(part_f)
# TODO: Fix this
# Disable chamfer distance and F1 score for now
parts_chamfer_distances.append(0.0)
parts_f_scores.append(0.0)
parts_chamfer_distances = torch.tensor(parts_chamfer_distances, device=accelerator.device)
parts_f_scores = torch.tensor(parts_f_scores, device=accelerator.device)
metrics_dictlist[f"parts_chamfer_distance_cfg{guidance_scale:.1f}"].append(parts_chamfer_distances.mean())
metrics_dictlist[f"parts_f_score_cfg{guidance_scale:.1f}"].append(parts_f_scores.mean())
# Only log the last (biggest) cfg metrics in the progress bar
val_logs = {
"parts_chamfer_distance": parts_chamfer_distances.mean().item(),
"parts_f_score": parts_f_scores.mean().item(),
}
val_progress_bar.set_postfix(**val_logs)
logger.info(
f"Validation [{val_step:02d}/{args.max_val_steps:02d}] " +
f"parts_chamfer_distance: {val_logs['parts_chamfer_distance']:.4f}, parts_f_score: {val_logs['parts_f_score']:.4f}"
)
logger.info(
f"parts_chamfer_distances: {[f'{x:.4f}' for x in parts_chamfer_distances.tolist()]}"
)
logger.info(
f"parts_f_scores: {[f'{x:.4f}' for x in parts_f_scores.tolist()]}"
)
val_step += 1
val_progress_bar.update(1)
val_progress_bar.close()
if accelerator.is_main_process:
for key, value in medias_dictlist.items():
if isinstance(value[0], Image.Image): # assuming gt_image
image_grid = make_grid_for_images_or_videos(
value,
nrow=configs['val']['nrow'],
return_type='pil',
)
image_grid.save(os.path.join(eval_dir, f"{global_step:06d}", f"{key}.png"))
wandb.log({f"validation/{key}": wandb.Image(image_grid)}, step=global_step)
else: # assuming pred_rendered_images or pred_rendered_normals
image_grids = make_grid_for_images_or_videos(
value,
nrow=configs['val']['nrow'],
return_type='ndarray',
)
wandb.log({
f"validation/{key}": wandb.Video(
image_grids,
fps=configs['val']['rendering']['fps'],
format="gif"
)}, step=global_step)
image_grids = [Image.fromarray(image_grid.transpose(1, 2, 0)) for image_grid in image_grids]
export_renderings(
image_grids,
os.path.join(eval_dir, f"{global_step:06d}", f"{key}.gif"),
fps=configs['val']['rendering']['fps']
)
for k, v in metrics_dictlist.items():
wandb.log({f"validation/{k}": torch.tensor(v).mean().item()}, step=global_step)
if __name__ == "__main__":
main()
|