File size: 42,817 Bytes
bef5729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
import warnings
warnings.filterwarnings("ignore")  # ignore all warnings
import diffusers.utils.logging as diffusion_logging
diffusion_logging.set_verbosity_error()  # ignore diffusers warnings

from src.utils.typing_utils import *

import os
import argparse
import logging
import time
import math
import gc
from packaging import version

import trimesh
from PIL import Image
import numpy as np
import wandb
from tqdm import tqdm

import torch
import torch.nn.functional as tF
import accelerate
from accelerate import Accelerator
from accelerate.logging import get_logger as get_accelerate_logger
from accelerate import DataLoaderConfiguration, DeepSpeedPlugin
from diffusers.training_utils import (
    compute_density_for_timestep_sampling,
    compute_loss_weighting_for_sd3
)

from transformers import (
    BitImageProcessor,
    Dinov2Model,
)
from src.schedulers import RectifiedFlowScheduler
from src.models.autoencoders import TripoSGVAEModel
from src.models.transformers import PartCrafterDiTModel
from src.pipelines.pipeline_partcrafter import PartCrafterPipeline

from src.datasets import (
    ObjaversePartDataset, 
    BatchedObjaversePartDataset, 
    MultiEpochsDataLoader, 
    yield_forever
)
from src.utils.data_utils import get_colored_mesh_composition
from src.utils.train_utils import (
    MyEMAModel, 
    get_configs,
    get_optimizer,
    get_lr_scheduler,
    save_experiment_params,
    save_model_architecture,
)
from src.utils.render_utils import (
    render_views_around_mesh, 
    render_normal_views_around_mesh, 
    make_grid_for_images_or_videos,
    export_renderings
)
from src.utils.metric_utils import compute_cd_and_f_score_in_training

def main():
    PROJECT_NAME = "PartCrafter"

    parser = argparse.ArgumentParser(
        description="Train a diffusion model for 3D object generation",
    )

    parser.add_argument(
        "--config",
        type=str,
        required=True,
        help="Path to the config file"
    )
    parser.add_argument(
        "--tag",
        type=str,
        default=None,
        help="Tag that refers to the current experiment"
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output",
        help="Path to the output directory"
    )
    parser.add_argument(
        "--resume_from_iter",
        type=int,
        default=None,
        help="The iteration to load the checkpoint from"
    )
    parser.add_argument(
        "--seed",
        type=int,
        default=0,
        help="Seed for the PRNG"
    )
    parser.add_argument(
        "--offline_wandb",
        action="store_true",
        help="Use offline WandB for experiment tracking"
    )

    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="The max iteration step for training"
    )
    parser.add_argument(
        "--max_val_steps",
        type=int,
        default=2,
        help="The max iteration step for validation"
    )
    parser.add_argument(
        "--num_workers",
        type=int,
        default=32,
        help="The number of processed spawned by the batch provider"
    )
    parser.add_argument(
        "--pin_memory",
        action="store_true",
        help="Pin memory for the data loader"
    )

    parser.add_argument(
        "--use_ema",
        action="store_true",
        help="Use EMA model for training"
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        help="Scale lr with total batch size (base batch size: 256)"
    )
    parser.add_argument(
        "--max_grad_norm",
        type=float,
        default=1.,
        help="Max gradient norm for gradient clipping"
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass"
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="fp16",
        choices=["no", "fp16", "bf16"],
        help="Type of mixed precision training"
    )
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help="Enable TF32 for faster training on Ampere GPUs"
    )

    parser.add_argument(
        "--val_guidance_scales",
        type=list,
        nargs="+",
        default=[7.0],
        help="CFG scale used for validation"
    )

    parser.add_argument(
        "--use_deepspeed",
        action="store_true",
        help="Use DeepSpeed for training"
    )
    parser.add_argument(
        "--zero_stage",
        type=int,
        default=1,
        choices=[1, 2, 3],  # https://huggingface.co/docs/accelerate/usage_guides/deepspeed
        help="ZeRO stage type for DeepSpeed"
    )

    parser.add_argument(
        "--from_scratch",
        action="store_true",
        help="Train from scratch"
    )
    parser.add_argument(
        "--load_pretrained_model",
        type=str,
        default=None,
        help="Tag of a pretrained PartCrafterDiTModel in this project"
    )
    parser.add_argument(
        "--load_pretrained_model_ckpt",
        type=int,
        default=-1,
        help="Iteration of the pretrained PartCrafterDiTModel checkpoint"
    )

    # Parse the arguments
    args, extras = parser.parse_known_args()
    # Parse the config file
    configs = get_configs(args.config, extras)  # change yaml configs by `extras`

    args.val_guidance_scales = [float(x[0]) if isinstance(x, list) else float(x) for x in args.val_guidance_scales]
    if args.max_val_steps > 0: 
        # If enable validation, the max_val_steps must be a multiple of nrow
        # Always keep validation batchsize 1
        divider = configs["val"]["nrow"]
        args.max_val_steps = max(args.max_val_steps, divider)
        if args.max_val_steps % divider != 0:
            args.max_val_steps = (args.max_val_steps // divider + 1) * divider

    # Create an experiment directory using the `tag`
    if args.tag is None:
        args.tag = time.strftime("%Y%m%d_%H_%M_%S")
    exp_dir = os.path.join(args.output_dir, args.tag)
    ckpt_dir = os.path.join(exp_dir, "checkpoints")
    eval_dir = os.path.join(exp_dir, "evaluations")
    os.makedirs(ckpt_dir, exist_ok=True)
    os.makedirs(eval_dir, exist_ok=True)

    # Initialize the logger
    logging.basicConfig(
        format="%(asctime)s - %(message)s",
        datefmt="%Y/%m/%d %H:%M:%S",
        level=logging.INFO
    )
    logger = get_accelerate_logger(__name__, log_level="INFO")
    file_handler = logging.FileHandler(os.path.join(exp_dir, "log.txt"))  # output to file
    file_handler.setFormatter(logging.Formatter(
        fmt="%(asctime)s - %(message)s",
        datefmt="%Y/%m/%d %H:%M:%S"
    ))
    logger.logger.addHandler(file_handler)
    logger.logger.propagate = True  # propagate to the root logger (console)

    # Set DeepSpeed config
    if args.use_deepspeed:
        deepspeed_plugin = DeepSpeedPlugin(
            gradient_accumulation_steps=args.gradient_accumulation_steps,
            gradient_clipping=args.max_grad_norm,
            zero_stage=int(args.zero_stage),
            offload_optimizer_device="cpu",  # hard-coded here, TODO: make it configurable
        )
    else:
        deepspeed_plugin = None

    # Initialize the accelerator
    accelerator = Accelerator(
        project_dir=exp_dir,
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        split_batches=False,  # batch size per GPU
        dataloader_config=DataLoaderConfiguration(non_blocking=args.pin_memory),
        deepspeed_plugin=deepspeed_plugin,
    )
    logger.info(f"Accelerator state:\n{accelerator.state}\n")

    # Set the random seed
    if args.seed >= 0:
        accelerate.utils.set_seed(args.seed)
        logger.info(f"You have chosen to seed([{args.seed}]) the experiment [{args.tag}]\n")

    # Enable TF32 for faster training on Ampere GPUs
    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

    train_dataset = BatchedObjaversePartDataset(
        configs=configs,
        batch_size=configs["train"]["batch_size_per_gpu"],
        is_main_process=accelerator.is_main_process,
        shuffle=True,
        training=True,
    )
    val_dataset = ObjaversePartDataset(
        configs=configs,
        training=False,
    )
    train_loader = MultiEpochsDataLoader(
        train_dataset,
        batch_size=configs["train"]["batch_size_per_gpu"],
        num_workers=args.num_workers,
        drop_last=True,
        pin_memory=args.pin_memory,
        collate_fn=train_dataset.collate_fn,
    )
    val_loader = MultiEpochsDataLoader(
        val_dataset,
        batch_size=configs["val"]["batch_size_per_gpu"],
        num_workers=args.num_workers,
        drop_last=True,
        pin_memory=args.pin_memory,
    )
    random_val_loader = MultiEpochsDataLoader(
        val_dataset,
        batch_size=configs["val"]["batch_size_per_gpu"],
        shuffle=True,
        num_workers=args.num_workers,
        drop_last=True,
        pin_memory=args.pin_memory,
    )

    logger.info(f"Loaded [{len(train_dataset)}] training samples and [{len(val_dataset)}] validation samples\n")

    # Compute the effective batch size and scale learning rate
    total_batch_size = configs["train"]["batch_size_per_gpu"] * \
        accelerator.num_processes * args.gradient_accumulation_steps
    configs["train"]["total_batch_size"] = total_batch_size
    if args.scale_lr:
        configs["optimizer"]["lr"] *= (total_batch_size / 256)
        configs["lr_scheduler"]["max_lr"] = configs["optimizer"]["lr"]
    
    # Initialize the model
    logger.info("Initializing the model...")
    vae = TripoSGVAEModel.from_pretrained(
        configs["model"]["pretrained_model_name_or_path"],
        subfolder="vae"
    )
    feature_extractor_dinov2 = BitImageProcessor.from_pretrained(
        configs["model"]["pretrained_model_name_or_path"],
        subfolder="feature_extractor_dinov2"
    )
    image_encoder_dinov2 = Dinov2Model.from_pretrained(
        configs["model"]["pretrained_model_name_or_path"],
        subfolder="image_encoder_dinov2"
    )

    enable_part_embedding = configs["model"]["transformer"].get("enable_part_embedding", True)
    enable_local_cross_attn = configs["model"]["transformer"].get("enable_local_cross_attn", True)
    enable_global_cross_attn = configs["model"]["transformer"].get("enable_global_cross_attn", True)
    global_attn_block_ids = configs["model"]["transformer"].get("global_attn_block_ids", None)
    if global_attn_block_ids is not None:
        global_attn_block_ids = list(global_attn_block_ids)
    global_attn_block_id_range = configs["model"]["transformer"].get("global_attn_block_id_range", None)
    if global_attn_block_id_range is not None:
        global_attn_block_id_range = list(global_attn_block_id_range)
    if args.from_scratch:
        logger.info(f"Initialize PartCrafterDiTModel from scratch\n")
        transformer = PartCrafterDiTModel.from_config(
            os.path.join(
                configs["model"]["pretrained_model_name_or_path"],
                "transformer"
            ), 
            enable_part_embedding=enable_part_embedding,
            enable_local_cross_attn=enable_local_cross_attn,
            enable_global_cross_attn=enable_global_cross_attn,
            global_attn_block_ids=global_attn_block_ids,
            global_attn_block_id_range=global_attn_block_id_range,
        )
    elif args.load_pretrained_model is None:
        logger.info(f"Load pretrained TripoSGDiTModel to initialize PartCrafterDiTModel from [{configs['model']['pretrained_model_name_or_path']}]\n")
        transformer, loading_info = PartCrafterDiTModel.from_pretrained(
            configs["model"]["pretrained_model_name_or_path"],
            subfolder="transformer",
            low_cpu_mem_usage=False, 
            output_loading_info=True, 
            enable_part_embedding=enable_part_embedding,
            enable_local_cross_attn=enable_local_cross_attn,
            enable_global_cross_attn=enable_global_cross_attn,
            global_attn_block_ids=global_attn_block_ids,
            global_attn_block_id_range=global_attn_block_id_range,
        )
    else:
        logger.info(f"Load PartCrafterDiTModel EMA checkpoint from [{args.load_pretrained_model}] iteration [{args.load_pretrained_model_ckpt:06d}]\n")
        path = os.path.join(
            args.output_dir,
            args.load_pretrained_model, 
            "checkpoints", 
            f"{args.load_pretrained_model_ckpt:06d}"
        )
        transformer, loading_info = PartCrafterDiTModel.from_pretrained(
            path, 
            subfolder="transformer_ema",
            low_cpu_mem_usage=False, 
            output_loading_info=True, 
            enable_part_embedding=enable_part_embedding,
            enable_local_cross_attn=enable_local_cross_attn,
            enable_global_cross_attn=enable_global_cross_attn,
            global_attn_block_ids=global_attn_block_ids,
            global_attn_block_id_range=global_attn_block_id_range,
        )
    if not args.from_scratch:
        for v in loading_info.values():
            if v and len(v) > 0:
                logger.info(f"Loading info of PartCrafterDiTModel: {loading_info}\n")
                break

    noise_scheduler = RectifiedFlowScheduler.from_pretrained(
        configs["model"]["pretrained_model_name_or_path"],
        subfolder="scheduler"
    )

    if args.use_ema:
        ema_transformer = MyEMAModel(
            transformer.parameters(),
            model_cls=PartCrafterDiTModel,
            model_config=transformer.config,
            **configs["train"]["ema_kwargs"]
        )

    # Freeze VAE and image encoder
    vae.requires_grad_(False)
    image_encoder_dinov2.requires_grad_(False)
    vae.eval()
    image_encoder_dinov2.eval()

    trainable_modules = configs["train"].get("trainable_modules", None)
    if trainable_modules is None:
        transformer.requires_grad_(True)
    else:
        trainable_module_names = []
        transformer.requires_grad_(False)
        for name, module in transformer.named_modules():
            for module_name in tuple(trainable_modules.split(",")):
                if module_name in name:
                    for params in module.parameters():
                        params.requires_grad = True
                    trainable_module_names.append(name)
        logger.info(f"Trainable parameter names: {trainable_module_names}\n")

    # transformer.enable_xformers_memory_efficient_attention()  # use `tF.scaled_dot_product_attention` instead

    # `accelerate` 0.16.0 will have better support for customized saving
    if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
        # Create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
        def save_model_hook(models, weights, output_dir):
            if accelerator.is_main_process:
                if args.use_ema:
                    ema_transformer.save_pretrained(os.path.join(output_dir, "transformer_ema"))

                for i, model in enumerate(models):
                    model.save_pretrained(os.path.join(output_dir, "transformer"))

                    # Make sure to pop weight so that corresponding model is not saved again
                    if weights:
                        weights.pop()

        def load_model_hook(models, input_dir):
            if args.use_ema:
                load_model = MyEMAModel.from_pretrained(os.path.join(input_dir, "transformer_ema"), PartCrafterDiTModel)
                ema_transformer.load_state_dict(load_model.state_dict())
                ema_transformer.to(accelerator.device)
                del load_model

            for _ in range(len(models)):
                # Pop models so that they are not loaded again
                model = models.pop()

                # Load diffusers style into model
                load_model = PartCrafterDiTModel.from_pretrained(input_dir, subfolder="transformer")
                model.register_to_config(**load_model.config)

                model.load_state_dict(load_model.state_dict())
                del load_model

        accelerator.register_save_state_pre_hook(save_model_hook)
        accelerator.register_load_state_pre_hook(load_model_hook)

    if configs["train"]["grad_checkpoint"]:
        transformer.enable_gradient_checkpointing()

    # Initialize the optimizer and learning rate scheduler
    logger.info("Initializing the optimizer and learning rate scheduler...\n")
    name_lr_mult = configs["train"].get("name_lr_mult", None)
    lr_mult = configs["train"].get("lr_mult", 1.0)
    params, params_lr_mult, names_lr_mult = [], [], []
    for name, param in transformer.named_parameters():
        if name_lr_mult is not None:
            for k in name_lr_mult.split(","):
                if k in name:
                    params_lr_mult.append(param)
                    names_lr_mult.append(name)
            if name not in names_lr_mult:
                params.append(param)
        else:
            params.append(param)
    optimizer = get_optimizer(
        params=[
            {"params": params, "lr": configs["optimizer"]["lr"]},
            {"params": params_lr_mult, "lr": configs["optimizer"]["lr"] * lr_mult}
        ],
        **configs["optimizer"]
    )
    if name_lr_mult is not None:
        logger.info(f"Learning rate x [{lr_mult}] parameter names: {names_lr_mult}\n")

    configs["lr_scheduler"]["total_steps"] = configs["train"]["epochs"] * math.ceil(
        len(train_loader) // accelerator.num_processes / args.gradient_accumulation_steps)  # only account updated steps
    configs["lr_scheduler"]["total_steps"] *= accelerator.num_processes  # for lr scheduler setting
    if "num_warmup_steps" in configs["lr_scheduler"]:
        configs["lr_scheduler"]["num_warmup_steps"] *= accelerator.num_processes  # for lr scheduler setting
    lr_scheduler = get_lr_scheduler(optimizer=optimizer, **configs["lr_scheduler"])
    configs["lr_scheduler"]["total_steps"] //= accelerator.num_processes  # reset for multi-gpu
    if "num_warmup_steps" in configs["lr_scheduler"]:
        configs["lr_scheduler"]["num_warmup_steps"] //= accelerator.num_processes  # reset for multi-gpu

    # Prepare everything with `accelerator`
    transformer, optimizer, lr_scheduler, train_loader, val_loader, random_val_loader = accelerator.prepare(
        transformer, optimizer, lr_scheduler, train_loader, val_loader, random_val_loader
    )
    # Set classes explicitly for everything
    transformer: DistributedDataParallel
    optimizer: AcceleratedOptimizer
    lr_scheduler: AcceleratedScheduler
    train_loader: DataLoaderShard
    val_loader: DataLoaderShard
    random_val_loader: DataLoaderShard

    if args.use_ema:
        ema_transformer.to(accelerator.device)

    # For mixed precision training we cast all non-trainable weigths to half-precision
    # as these weights are only used for inference, keeping weights in full precision is not required.
    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

    # Move `vae` and `image_encoder_dinov2` to gpu and cast to `weight_dtype`
    vae.to(accelerator.device, dtype=weight_dtype)
    image_encoder_dinov2.to(accelerator.device, dtype=weight_dtype)

    # Training configs after distribution and accumulation setup
    updated_steps_per_epoch = math.ceil(len(train_loader) / args.gradient_accumulation_steps)
    total_updated_steps = configs["lr_scheduler"]["total_steps"]
    if args.max_train_steps is None:
        args.max_train_steps = total_updated_steps
    assert configs["train"]["epochs"] * updated_steps_per_epoch == total_updated_steps
    if accelerator.num_processes > 1 and accelerator.is_main_process:
        print()
    accelerator.wait_for_everyone()
    logger.info(f"Total batch size: [{total_batch_size}]")
    logger.info(f"Learning rate: [{configs['optimizer']['lr']}]")
    logger.info(f"Gradient Accumulation steps: [{args.gradient_accumulation_steps}]")
    logger.info(f"Total epochs: [{configs['train']['epochs']}]")
    logger.info(f"Total steps: [{total_updated_steps}]")
    logger.info(f"Steps for updating per epoch: [{updated_steps_per_epoch}]")
    logger.info(f"Steps for validation: [{len(val_loader)}]\n")

    # (Optional) Load checkpoint
    global_update_step = 0
    if args.resume_from_iter is not None:
        if args.resume_from_iter < 0:
            args.resume_from_iter = int(sorted(os.listdir(ckpt_dir))[-1])
        logger.info(f"Load checkpoint from iteration [{args.resume_from_iter}]\n")
        # Load everything
        if version.parse(torch.__version__) >= version.parse("2.4.0"):
            torch.serialization.add_safe_globals([
                int, list, dict, 
                defaultdict,
                Any,
                DictConfig, ListConfig, Metadata, ContainerMetadata, AnyNode
            ]) # avoid deserialization error when loading optimizer state
        accelerator.load_state(os.path.join(ckpt_dir, f"{args.resume_from_iter:06d}"))  # torch < 2.4.0 here for `weights_only=False`
        global_update_step = int(args.resume_from_iter)

    # Save all experimental parameters and model architecture of this run to a file (args and configs)
    if accelerator.is_main_process:
        exp_params = save_experiment_params(args, configs, exp_dir)
        save_model_architecture(accelerator.unwrap_model(transformer), exp_dir)

    # WandB logger
    if accelerator.is_main_process:
        if args.offline_wandb:
            os.environ["WANDB_MODE"] = "offline"
        wandb.init(
            project=PROJECT_NAME, name=args.tag,
            config=exp_params, dir=exp_dir,
            resume=True
        )
        # Wandb artifact for logging experiment information
        arti_exp_info = wandb.Artifact(args.tag, type="exp_info")
        arti_exp_info.add_file(os.path.join(exp_dir, "params.yaml"))
        arti_exp_info.add_file(os.path.join(exp_dir, "model.txt"))
        arti_exp_info.add_file(os.path.join(exp_dir, "log.txt"))  # only save the log before training
        wandb.log_artifact(arti_exp_info)

    def get_sigmas(timesteps: Tensor, n_dim: int, dtype=torch.float32):
        sigmas = noise_scheduler.sigmas.to(dtype=dtype, device=accelerator.device)
        schedule_timesteps = noise_scheduler.timesteps.to(accelerator.device)
        timesteps = timesteps.to(accelerator.device)

        step_indices = [(schedule_timesteps == t).nonzero()[0].item() for t in timesteps]

        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < n_dim:
            sigma = sigma.unsqueeze(-1)
        return sigma

    # Start training
    if accelerator.is_main_process:
        print()
    logger.info(f"Start training into {exp_dir}\n")
    logger.logger.propagate = False  # not propagate to the root logger (console)
    progress_bar = tqdm(
        range(total_updated_steps),
        initial=global_update_step,
        desc="Training",
        ncols=125,
        disable=not accelerator.is_main_process
    )
    for batch in yield_forever(train_loader):

        if global_update_step == args.max_train_steps:
            progress_bar.close()
            logger.logger.propagate = True  # propagate to the root logger (console)
            if accelerator.is_main_process:
                wandb.finish()
            logger.info("Training finished!\n")
            return

        transformer.train()

        with accelerator.accumulate(transformer):
            
            images = batch["images"] # [N, H, W, 3]
            with torch.no_grad():
                images = feature_extractor_dinov2(images=images, return_tensors="pt").pixel_values
            images = images.to(device=accelerator.device, dtype=weight_dtype)
            with torch.no_grad():
                image_embeds = image_encoder_dinov2(images).last_hidden_state
            negative_image_embeds = torch.zeros_like(image_embeds)

            part_surfaces = batch["part_surfaces"] # [N, P, 6]
            part_surfaces = part_surfaces.to(device=accelerator.device, dtype=weight_dtype)

            num_parts = batch["num_parts"] # [M, ] The shape of num_parts is not fixed
            num_objects = num_parts.shape[0] # M

            with torch.no_grad():
                latents = vae.encode(
                    part_surfaces, 
                    **configs["model"]["vae"]
                ).latent_dist.sample()

            noise = torch.randn_like(latents)
            # For weighting schemes where we sample timesteps non-uniformly
            u = compute_density_for_timestep_sampling(
                weighting_scheme=configs["train"]["weighting_scheme"],
                batch_size=num_objects,
                logit_mean=configs["train"]["logit_mean"],
                logit_std=configs["train"]["logit_std"],
                mode_scale=configs["train"]["mode_scale"],
            )
            indices = (u * noise_scheduler.config.num_train_timesteps).long()
            timesteps = noise_scheduler.timesteps[indices].to(accelerator.device) # [M, ]
            # Repeat the timesteps for each part
            timesteps = timesteps.repeat_interleave(num_parts) # [N, ]

            sigmas = get_sigmas(timesteps, len(latents.shape), weight_dtype)
            latent_model_input = noisy_latents = (1. - sigmas) * latents + sigmas * noise

            if configs["train"]["cfg_dropout_prob"] > 0:
                # We use the same dropout mask for the same part
                dropout_mask = torch.rand(num_objects, device=accelerator.device) < configs["train"]["cfg_dropout_prob"] # [M, ]
                dropout_mask = dropout_mask.repeat_interleave(num_parts) # [N, ]
                if dropout_mask.any():
                    image_embeds[dropout_mask] = negative_image_embeds[dropout_mask]

            model_pred = transformer(
                hidden_states=latent_model_input,
                timestep=timesteps,
                encoder_hidden_states=image_embeds, 
                attention_kwargs={"num_parts": num_parts}
            ).sample

            if configs["train"]["training_objective"] == "x0":  # Section 5 of https://arxiv.org/abs/2206.00364
                model_pred = model_pred * (-sigmas) + noisy_latents  # predicted x_0
                target = latents
            elif configs["train"]["training_objective"] == 'v':  # flow matching
                target = noise - latents
            elif configs["train"]["training_objective"] == '-v':  # reverse flow matching
                # The training objective for TripoSG is the reverse of the flow matching objective. 
                # It uses "different directions", i.e., the negative velocity. 
                # This is probably a mistake in engineering, not very harmful. 
                # In TripoSG's rectified flow scheduler, prev_sample = sample + (sigma - sigma_next) * model_output
                # See TripoSG's scheduler https://github.com/VAST-AI-Research/TripoSG/blob/main/triposg/schedulers/scheduling_rectified_flow.py#L296
                # While in diffusers's flow matching scheduler, prev_sample = sample + (sigma_next - sigma) * model_output
                # See https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py#L454
                target = latents - noise
            else:
                raise ValueError(f"Unknown training objective [{configs['train']['training_objective']}]")

            # For these weighting schemes use a uniform timestep sampling, so post-weight the loss
            weighting = compute_loss_weighting_for_sd3(
                configs["train"]["weighting_scheme"],
                sigmas
            )

            loss = weighting * tF.mse_loss(model_pred.float(), target.float(), reduction="none")
            loss = loss.mean(dim=list(range(1, len(loss.shape))))

            # Backpropagate
            accelerator.backward(loss.mean())
            if accelerator.sync_gradients:
                accelerator.clip_grad_norm_(transformer.parameters(), args.max_grad_norm)

            optimizer.step()
            lr_scheduler.step()
            optimizer.zero_grad()

        # Checks if the accelerator has performed an optimization step behind the scenes
        if accelerator.sync_gradients:
            # Gather the losses across all processes for logging (if we use distributed training)
            loss = accelerator.gather(loss.detach()).mean()

            logs = {
                "loss": loss.item(),
                "lr": lr_scheduler.get_last_lr()[0]
            }
            if args.use_ema:
                ema_transformer.step(transformer.parameters())
                logs.update({"ema": ema_transformer.cur_decay_value})

            progress_bar.set_postfix(**logs)
            progress_bar.update(1)
            global_update_step += 1

            logger.info(
                f"[{global_update_step:06d} / {total_updated_steps:06d}] " +
                f"loss: {logs['loss']:.4f}, lr: {logs['lr']:.2e}" +
                f", ema: {logs['ema']:.4f}" if args.use_ema else ""
            )

            # Log the training progress
            if (
                global_update_step % configs["train"]["log_freq"] == 0 
                or global_update_step == 1
                or global_update_step % updated_steps_per_epoch == 0 # last step of an epoch
            ):  
                if accelerator.is_main_process:
                    wandb.log({
                        "training/loss": logs["loss"],
                        "training/lr": logs["lr"],
                    }, step=global_update_step)
                    if args.use_ema:
                        wandb.log({
                            "training/ema": logs["ema"]
                        }, step=global_update_step)

            # Save checkpoint
            if (
                global_update_step % configs["train"]["save_freq"] == 0  # 1. every `save_freq` steps
                or global_update_step % (configs["train"]["save_freq_epoch"] * updated_steps_per_epoch) == 0  # 2. every `save_freq_epoch` epochs
                or global_update_step == total_updated_steps # 3. last step of an epoch
                # or global_update_step == 1 # 4. first step
            ): 

                gc.collect()
                if accelerator.distributed_type == accelerate.utils.DistributedType.DEEPSPEED:
                    # DeepSpeed requires saving weights on every device; saving weights only on the main process would cause issues
                    accelerator.save_state(os.path.join(ckpt_dir, f"{global_update_step:06d}"))
                elif accelerator.is_main_process:
                    accelerator.save_state(os.path.join(ckpt_dir, f"{global_update_step:06d}"))
                accelerator.wait_for_everyone()  # ensure all processes have finished saving
                gc.collect()

            # Evaluate on the validation set
            if args.max_val_steps > 0 and (
                (global_update_step % configs["train"]["early_eval_freq"] == 0 and global_update_step < configs["train"]["early_eval"])  # 1. more frequently at the beginning
                or global_update_step % configs["train"]["eval_freq"] == 0  # 2. every `eval_freq` steps
                or global_update_step % (configs["train"]["eval_freq_epoch"] * updated_steps_per_epoch) == 0  # 3. every `eval_freq_epoch` epochs
                or global_update_step == total_updated_steps # 4. last step of an epoch
                or global_update_step == 1 # 5. first step
            ):  

                # Use EMA parameters for evaluation
                if args.use_ema:
                    # Store the Transformer parameters temporarily and load the EMA parameters to perform inference
                    ema_transformer.store(transformer.parameters())
                    ema_transformer.copy_to(transformer.parameters())

                transformer.eval()

                log_validation(
                    val_loader, random_val_loader,
                    feature_extractor_dinov2, image_encoder_dinov2,
                    vae, transformer,
                    global_update_step, eval_dir,
                    accelerator, logger,
                    args, configs
                )

                if args.use_ema:
                    # Switch back to the original Transformer parameters
                    ema_transformer.restore(transformer.parameters())

                torch.cuda.empty_cache()
                gc.collect()

@torch.no_grad()
def log_validation(
    dataloader, random_dataloader,
    feature_extractor_dinov2, image_encoder_dinov2,
    vae, transformer, 
    global_step, eval_dir,
    accelerator, logger,  
    args, configs
):  

    val_noise_scheduler = RectifiedFlowScheduler.from_pretrained(
        configs["model"]["pretrained_model_name_or_path"],
        subfolder="scheduler"
    )

    pipeline = PartCrafterPipeline(
        vae=vae,
        transformer=accelerator.unwrap_model(transformer),
        scheduler=val_noise_scheduler,
        feature_extractor_dinov2=feature_extractor_dinov2,
        image_encoder_dinov2=image_encoder_dinov2,
    )

    pipeline.set_progress_bar_config(disable=True)
    # pipeline.enable_xformers_memory_efficient_attention()

    if args.seed >= 0:
        generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)
    else:
        generator = None
        

    val_progress_bar = tqdm(
        range(len(dataloader)) if args.max_val_steps is None else range(args.max_val_steps),
        desc=f"Validation [{global_step:06d}]",
        ncols=125,
        disable=not accelerator.is_main_process
    )

    medias_dictlist, metrics_dictlist = defaultdict(list), defaultdict(list)

    val_dataloder, random_val_dataloader = yield_forever(dataloader), yield_forever(random_dataloader)
    val_step = 0
    while val_step < args.max_val_steps:

        if val_step < args.max_val_steps // 2:
            # fix the first half
            batch = next(val_dataloder)
        else:
            # randomly sample the next batch
            batch = next(random_val_dataloader)

        images = batch["images"]
        if len(images.shape) == 5:
            images = images[0] # (1, N, H, W, 3) -> (N, H, W, 3)
        images = [Image.fromarray(image) for image in images.cpu().numpy()]
        part_surfaces = batch["part_surfaces"].cpu().numpy()
        if len(part_surfaces.shape) == 4:
            part_surfaces = part_surfaces[0] # (1, N, P, 6) -> (N, P, 6)

        N = len(images)

        val_progress_bar.set_postfix(
            {"num_parts": N}
        )

        with torch.autocast("cuda", torch.float16):
            for guidance_scale in sorted(args.val_guidance_scales):
                pred_part_meshes = pipeline(
                    images, 
                    num_inference_steps=configs['val']['num_inference_steps'],
                    num_tokens=configs['model']['vae']['num_tokens'],
                    guidance_scale=guidance_scale, 
                    attention_kwargs={"num_parts": N},
                    generator=generator,
                    max_num_expanded_coords=configs['val']['max_num_expanded_coords'],
                    use_flash_decoder=configs['val']['use_flash_decoder'],
                ).meshes

                # Save the generated meshes
                if accelerator.is_main_process:
                    local_eval_dir = os.path.join(eval_dir, f"{global_step:06d}", f"guidance_scale_{guidance_scale:.1f}")
                    os.makedirs(local_eval_dir, exist_ok=True)
                    rendered_images_list, rendered_normals_list = [], []
                    # 1. save the gt image
                    images[0].save(os.path.join(local_eval_dir, f"{val_step:04d}.png"))
                    # 2. save the generated part meshes
                    for n in range(N):
                        if pred_part_meshes[n] is None:
                            # If the generated mesh is None (decoing error), use a dummy mesh
                            pred_part_meshes[n] = trimesh.Trimesh(vertices=[[0, 0, 0]], faces=[[0, 0, 0]])
                        pred_part_meshes[n].export(os.path.join(local_eval_dir, f"{val_step:04d}_{n:02d}.glb"))
                    # 3. render the generated mesh and save the rendered images
                    pred_mesh = get_colored_mesh_composition(pred_part_meshes)
                    rendered_images: List[Image.Image] = render_views_around_mesh(
                        pred_mesh, 
                        num_views=configs['val']['rendering']['num_views'],
                        radius=configs['val']['rendering']['radius'],
                    )
                    rendered_normals: List[Image.Image] = render_normal_views_around_mesh(
                        pred_mesh,
                        num_views=configs['val']['rendering']['num_views'],
                        radius=configs['val']['rendering']['radius'],
                    )
                    export_renderings(
                        rendered_images,
                        os.path.join(local_eval_dir, f"{val_step:04d}.gif"),
                        fps=configs['val']['rendering']['fps']
                    )
                    export_renderings(
                        rendered_normals,
                        os.path.join(local_eval_dir, f"{val_step:04d}_normals.gif"),
                        fps=configs['val']['rendering']['fps']
                    )
                    rendered_images_list.append(rendered_images)
                    rendered_normals_list.append(rendered_normals)

                    medias_dictlist[f"guidance_scale_{guidance_scale:.1f}/gt_image"] += [images[0]] # List[Image.Image] TODO: support batch size > 1
                    medias_dictlist[f"guidance_scale_{guidance_scale:.1f}/pred_rendered_images"] += rendered_images_list # List[List[Image.Image]]
                    medias_dictlist[f"guidance_scale_{guidance_scale:.1f}/pred_rendered_normals"] += rendered_normals_list # List[List[Image.Image]]

                ################################ Compute generation metrics ################################

                parts_chamfer_distances, parts_f_scores = [], []

                for n in range(N):
                    # gt_part_surface = part_surfaces[n]
                    # pred_part_mesh = pred_part_meshes[n]
                    # if pred_part_mesh is None:
                    #     # If the generated mesh is None (decoing error), use a dummy mesh
                    #     pred_part_mesh = trimesh.Trimesh(vertices=[[0, 0, 0]], faces=[[0, 0, 0]])
                    # part_cd, part_f = compute_cd_and_f_score_in_training(
                    #     gt_part_surface, pred_part_mesh,
                    #     num_samples=configs['val']['metric']['cd_num_samples'],
                    #     threshold=configs['val']['metric']['f1_score_threshold'],
                    #     metric=configs['val']['metric']['cd_metric']
                    # )
                    # # avoid nan
                    # part_cd = configs['val']['metric']['default_cd'] if np.isnan(part_cd) else part_cd
                    # part_f = configs['val']['metric']['default_f1'] if np.isnan(part_f) else part_f
                    # parts_chamfer_distances.append(part_cd)
                    # parts_f_scores.append(part_f)

                    # TODO: Fix this
                    # Disable chamfer distance and F1 score for now
                    parts_chamfer_distances.append(0.0)
                    parts_f_scores.append(0.0)

                parts_chamfer_distances = torch.tensor(parts_chamfer_distances, device=accelerator.device)
                parts_f_scores = torch.tensor(parts_f_scores, device=accelerator.device)

                metrics_dictlist[f"parts_chamfer_distance_cfg{guidance_scale:.1f}"].append(parts_chamfer_distances.mean())
                metrics_dictlist[f"parts_f_score_cfg{guidance_scale:.1f}"].append(parts_f_scores.mean())
            
        # Only log the last (biggest) cfg metrics in the progress bar
        val_logs = {
            "parts_chamfer_distance": parts_chamfer_distances.mean().item(),
            "parts_f_score": parts_f_scores.mean().item(),
        }
        val_progress_bar.set_postfix(**val_logs)
        logger.info(
            f"Validation [{val_step:02d}/{args.max_val_steps:02d}] " +
            f"parts_chamfer_distance: {val_logs['parts_chamfer_distance']:.4f}, parts_f_score: {val_logs['parts_f_score']:.4f}"
        )
        logger.info(
            f"parts_chamfer_distances: {[f'{x:.4f}' for x in parts_chamfer_distances.tolist()]}"
        )
        logger.info(
            f"parts_f_scores: {[f'{x:.4f}' for x in parts_f_scores.tolist()]}"
        )
        val_step += 1
        val_progress_bar.update(1)

    val_progress_bar.close()

    if accelerator.is_main_process:
        for key, value in medias_dictlist.items():
            if isinstance(value[0], Image.Image): # assuming gt_image
                image_grid = make_grid_for_images_or_videos(
                    value, 
                    nrow=configs['val']['nrow'],
                    return_type='pil', 
                )
                image_grid.save(os.path.join(eval_dir, f"{global_step:06d}", f"{key}.png"))
                wandb.log({f"validation/{key}": wandb.Image(image_grid)}, step=global_step)
            else: # assuming pred_rendered_images or pred_rendered_normals
                image_grids = make_grid_for_images_or_videos(
                    value, 
                    nrow=configs['val']['nrow'],
                    return_type='ndarray',
                )
                wandb.log({
                    f"validation/{key}": wandb.Video(
                        image_grids, 
                        fps=configs['val']['rendering']['fps'], 
                        format="gif"
                )}, step=global_step)
                image_grids = [Image.fromarray(image_grid.transpose(1, 2, 0)) for image_grid in image_grids]
                export_renderings(
                    image_grids, 
                    os.path.join(eval_dir, f"{global_step:06d}", f"{key}.gif"), 
                    fps=configs['val']['rendering']['fps']
                )

        for k, v in metrics_dictlist.items():
            wandb.log({f"validation/{k}": torch.tensor(v).mean().item()}, step=global_step)

if __name__ == "__main__":
    main()