File size: 5,788 Bytes
bef5729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from src.utils.typing_utils import *

import trimesh
import numpy as np
from sklearn.neighbors import NearestNeighbors

def sample_from_mesh(
    mesh: trimesh.Trimesh,
    num_samples: Optional[int] = 10000,
):
    if num_samples is None:
        return mesh.vertices
    else:
        return mesh.sample(num_samples)

def sample_two_meshes(
    mesh1: trimesh.Trimesh,
    mesh2: trimesh.Trimesh,
    num_samples: Optional[int] = 10000,
):
    points1 = sample_from_mesh(mesh1, num_samples)
    points2 = sample_from_mesh(mesh2, num_samples)
    return points1, points2

def compute_nearest_distance(
    points1: np.ndarray,
    points2: np.ndarray,
    metric: str = 'l2'
) -> np.ndarray:
    # Compute nearest neighbor distance from points1 to points2
    nn = NearestNeighbors(n_neighbors=1, leaf_size=30, algorithm='kd_tree', metric=metric).fit(points2)
    min_dist = nn.kneighbors(points1)[0]
    return min_dist

def compute_mutual_nearest_distance(
    points1: np.ndarray,
    points2: np.ndarray,
    metric: str = 'l2'
) -> np.ndarray:
    min_1_to_2 = compute_nearest_distance(points1, points2, metric=metric)
    min_2_to_1 = compute_nearest_distance(points2, points1, metric=metric)
    return min_1_to_2, min_2_to_1

def compute_mutual_nearest_distance_for_meshes(
    mesh1: trimesh.Trimesh,
    mesh2: trimesh.Trimesh,
    num_samples: Optional[int] = 10000,
    metric: str = 'l2'
) -> Tuple[np.ndarray, np.ndarray]:
    points1 = sample_from_mesh(mesh1, num_samples)
    points2 = sample_from_mesh(mesh2, num_samples)
    min_1_to_2, min_2_to_1 = compute_mutual_nearest_distance(points1, points2, metric=metric)
    return min_1_to_2, min_2_to_1

def compute_chamfer_distance(
    mesh1: trimesh.Trimesh,
    mesh2: trimesh.Trimesh,
    num_samples: int = 10000,
    metric: str = 'l2'
):
    min_1_to_2, min_2_to_1 = compute_mutual_nearest_distance_for_meshes(mesh1, mesh2, num_samples, metric=metric)
    chamfer_dist = np.mean(min_2_to_1) + np.mean(min_1_to_2)
    return chamfer_dist

def compute_f_score(
    mesh1: trimesh.Trimesh,
    mesh2: trimesh.Trimesh,
    num_samples: int = 10000,
    threshold: float = 0.1,
    metric: str = 'l2'
):
    min_1_to_2, min_2_to_1 = compute_mutual_nearest_distance_for_meshes(mesh1, mesh2, num_samples, metric=metric)
    precision_1 = np.mean((min_1_to_2 < threshold).astype(np.float32))
    precision_2 = np.mean((min_2_to_1 < threshold).astype(np.float32))
    fscore = 2 * precision_1 * precision_2 / (precision_1 + precision_2)
    return fscore

def compute_cd_and_f_score(
    mesh1: trimesh.Trimesh,
    mesh2: trimesh.Trimesh,
    num_samples: Optional[int] = 10000,
    threshold: float = 0.1,
    metric: str = 'l2'
):
    min_1_to_2, min_2_to_1 = compute_mutual_nearest_distance_for_meshes(mesh1, mesh2, num_samples, metric=metric)
    chamfer_dist = np.mean(min_2_to_1) + np.mean(min_1_to_2)
    precision_1 = np.mean((min_1_to_2 < threshold).astype(np.float32))
    precision_2 = np.mean((min_2_to_1 < threshold).astype(np.float32))
    fscore = 2 * precision_1 * precision_2 / (precision_1 + precision_2)
    return chamfer_dist, fscore

def compute_cd_and_f_score_in_training(
    gt_surface: np.ndarray,
    pred_mesh: trimesh.Trimesh,
    num_samples: int = 204800,
    threshold: float = 0.1,
    metric: str = 'l2'
):
    gt_points = gt_surface[:, :3]
    num_samples = max(num_samples, gt_points.shape[0])
    gt_points = gt_points[np.random.choice(gt_points.shape[0], num_samples, replace=False)]
    pred_points = sample_from_mesh(pred_mesh, num_samples)
    min_1_to_2, min_2_to_1 = compute_mutual_nearest_distance(gt_points, pred_points, metric=metric)
    chamfer_dist = np.mean(min_2_to_1) + np.mean(min_1_to_2)
    precision_1 = np.mean((min_1_to_2 < threshold).astype(np.float32))
    precision_2 = np.mean((min_2_to_1 < threshold).astype(np.float32))
    fscore = 2 * precision_1 * precision_2 / (precision_1 + precision_2)
    return chamfer_dist, fscore

def get_voxel_set(
    mesh: trimesh.Trimesh,
    num_grids: int = 64,
    scale: float = 2.0,
):
    if not isinstance(mesh, trimesh.Trimesh):
        raise ValueError("mesh must be a trimesh.Trimesh object")
    pitch = scale / num_grids
    voxel_girds: trimesh.voxel.base.VoxelGrid = mesh.voxelized(pitch=pitch).fill()
    voxels = set(map(tuple, np.round(voxel_girds.points / pitch).astype(int)))
    return voxels

def compute_IoU(
    mesh1: trimesh.Trimesh,
    mesh2: trimesh.Trimesh,
    num_grids: int = 64,
    scale: float = 2.0,
):
    if not isinstance(mesh1, trimesh.Trimesh) or not isinstance(mesh2, trimesh.Trimesh):
        raise ValueError("mesh1 and mesh2 must be trimesh.Trimesh objects")
    voxels1 = get_voxel_set(mesh1, num_grids, scale)
    voxels2 = get_voxel_set(mesh2, num_grids, scale)
    intersection = voxels1 & voxels2
    union = voxels1 | voxels2
    iou = len(intersection) / len(union) if len(union) > 0 else 0.0
    return iou

def compute_IoU_for_scene(
    scene: Union[trimesh.Scene, List[trimesh.Trimesh]],
    num_grids: int = 64,
    scale: float = 2.0,
    return_type: Literal["iou", "iou_list"] = "iou",
):
    if isinstance(scene, trimesh.Scene):
        scene = scene.dump()
    if isinstance(scene, list) and len(scene) > 1 and isinstance(scene[0], trimesh.Trimesh):
        meshes = scene
    else:
        raise ValueError("scene must be a trimesh.Scene object or a list of trimesh.Trimesh objects")
    ious = []
    for i in range(len(meshes)):
        for j in range(i+1, len(meshes)):
            iou = compute_IoU(meshes[i], meshes[j], num_grids, scale)
            ious.append(iou)
    if return_type == "iou":
        return np.mean(ious)
    elif return_type == "iou_list":
        return ious
    else:
        raise ValueError("return_type must be 'iou' or 'iou_list'")