from src.utils.typing_utils import * import trimesh import numpy as np from sklearn.neighbors import NearestNeighbors def sample_from_mesh( mesh: trimesh.Trimesh, num_samples: Optional[int] = 10000, ): if num_samples is None: return mesh.vertices else: return mesh.sample(num_samples) def sample_two_meshes( mesh1: trimesh.Trimesh, mesh2: trimesh.Trimesh, num_samples: Optional[int] = 10000, ): points1 = sample_from_mesh(mesh1, num_samples) points2 = sample_from_mesh(mesh2, num_samples) return points1, points2 def compute_nearest_distance( points1: np.ndarray, points2: np.ndarray, metric: str = 'l2' ) -> np.ndarray: # Compute nearest neighbor distance from points1 to points2 nn = NearestNeighbors(n_neighbors=1, leaf_size=30, algorithm='kd_tree', metric=metric).fit(points2) min_dist = nn.kneighbors(points1)[0] return min_dist def compute_mutual_nearest_distance( points1: np.ndarray, points2: np.ndarray, metric: str = 'l2' ) -> np.ndarray: min_1_to_2 = compute_nearest_distance(points1, points2, metric=metric) min_2_to_1 = compute_nearest_distance(points2, points1, metric=metric) return min_1_to_2, min_2_to_1 def compute_mutual_nearest_distance_for_meshes( mesh1: trimesh.Trimesh, mesh2: trimesh.Trimesh, num_samples: Optional[int] = 10000, metric: str = 'l2' ) -> Tuple[np.ndarray, np.ndarray]: points1 = sample_from_mesh(mesh1, num_samples) points2 = sample_from_mesh(mesh2, num_samples) min_1_to_2, min_2_to_1 = compute_mutual_nearest_distance(points1, points2, metric=metric) return min_1_to_2, min_2_to_1 def compute_chamfer_distance( mesh1: trimesh.Trimesh, mesh2: trimesh.Trimesh, num_samples: int = 10000, metric: str = 'l2' ): min_1_to_2, min_2_to_1 = compute_mutual_nearest_distance_for_meshes(mesh1, mesh2, num_samples, metric=metric) chamfer_dist = np.mean(min_2_to_1) + np.mean(min_1_to_2) return chamfer_dist def compute_f_score( mesh1: trimesh.Trimesh, mesh2: trimesh.Trimesh, num_samples: int = 10000, threshold: float = 0.1, metric: str = 'l2' ): min_1_to_2, min_2_to_1 = compute_mutual_nearest_distance_for_meshes(mesh1, mesh2, num_samples, metric=metric) precision_1 = np.mean((min_1_to_2 < threshold).astype(np.float32)) precision_2 = np.mean((min_2_to_1 < threshold).astype(np.float32)) fscore = 2 * precision_1 * precision_2 / (precision_1 + precision_2) return fscore def compute_cd_and_f_score( mesh1: trimesh.Trimesh, mesh2: trimesh.Trimesh, num_samples: Optional[int] = 10000, threshold: float = 0.1, metric: str = 'l2' ): min_1_to_2, min_2_to_1 = compute_mutual_nearest_distance_for_meshes(mesh1, mesh2, num_samples, metric=metric) chamfer_dist = np.mean(min_2_to_1) + np.mean(min_1_to_2) precision_1 = np.mean((min_1_to_2 < threshold).astype(np.float32)) precision_2 = np.mean((min_2_to_1 < threshold).astype(np.float32)) fscore = 2 * precision_1 * precision_2 / (precision_1 + precision_2) return chamfer_dist, fscore def compute_cd_and_f_score_in_training( gt_surface: np.ndarray, pred_mesh: trimesh.Trimesh, num_samples: int = 204800, threshold: float = 0.1, metric: str = 'l2' ): gt_points = gt_surface[:, :3] num_samples = max(num_samples, gt_points.shape[0]) gt_points = gt_points[np.random.choice(gt_points.shape[0], num_samples, replace=False)] pred_points = sample_from_mesh(pred_mesh, num_samples) min_1_to_2, min_2_to_1 = compute_mutual_nearest_distance(gt_points, pred_points, metric=metric) chamfer_dist = np.mean(min_2_to_1) + np.mean(min_1_to_2) precision_1 = np.mean((min_1_to_2 < threshold).astype(np.float32)) precision_2 = np.mean((min_2_to_1 < threshold).astype(np.float32)) fscore = 2 * precision_1 * precision_2 / (precision_1 + precision_2) return chamfer_dist, fscore def get_voxel_set( mesh: trimesh.Trimesh, num_grids: int = 64, scale: float = 2.0, ): if not isinstance(mesh, trimesh.Trimesh): raise ValueError("mesh must be a trimesh.Trimesh object") pitch = scale / num_grids voxel_girds: trimesh.voxel.base.VoxelGrid = mesh.voxelized(pitch=pitch).fill() voxels = set(map(tuple, np.round(voxel_girds.points / pitch).astype(int))) return voxels def compute_IoU( mesh1: trimesh.Trimesh, mesh2: trimesh.Trimesh, num_grids: int = 64, scale: float = 2.0, ): if not isinstance(mesh1, trimesh.Trimesh) or not isinstance(mesh2, trimesh.Trimesh): raise ValueError("mesh1 and mesh2 must be trimesh.Trimesh objects") voxels1 = get_voxel_set(mesh1, num_grids, scale) voxels2 = get_voxel_set(mesh2, num_grids, scale) intersection = voxels1 & voxels2 union = voxels1 | voxels2 iou = len(intersection) / len(union) if len(union) > 0 else 0.0 return iou def compute_IoU_for_scene( scene: Union[trimesh.Scene, List[trimesh.Trimesh]], num_grids: int = 64, scale: float = 2.0, return_type: Literal["iou", "iou_list"] = "iou", ): if isinstance(scene, trimesh.Scene): scene = scene.dump() if isinstance(scene, list) and len(scene) > 1 and isinstance(scene[0], trimesh.Trimesh): meshes = scene else: raise ValueError("scene must be a trimesh.Scene object or a list of trimesh.Trimesh objects") ious = [] for i in range(len(meshes)): for j in range(i+1, len(meshes)): iou = compute_IoU(meshes[i], meshes[j], num_grids, scale) ious.append(iou) if return_type == "iou": return np.mean(ious) elif return_type == "iou_list": return ious else: raise ValueError("return_type must be 'iou' or 'iou_list'")