model: pretrained_model_name_or_path: 'pretrained_weights/TripoSG' vae: num_tokens: 512 transformer: enable_local_cross_attn: true global_attn_block_ids: [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20] global_attn_block_id_range: null # The average should be 10 for unet-skipping dataset: config: - 'datasets/object_part_configs.json' # Modify this path if you use your own dataset training_ratio: 0.9 min_num_parts: 1 max_num_parts: 16 max_iou_mean: 0.5 max_iou_max: 0.5 shuffle_parts: true object_ratio: 0.3 rotating_ratio: 0.2 ratating_degree: 10 optimizer: name: "adamw" lr: 5e-5 betas: - 0.9 - 0.999 weight_decay: 0.01 eps: 1.e-8 lr_scheduler: name: "constant_warmup" num_warmup_steps: 1000 train: batch_size_per_gpu: 32 epochs: 10 grad_checkpoint: true weighting_scheme: "logit_normal" logit_mean: 0.0 logit_std: 1.0 mode_scale: 1.29 cfg_dropout_prob: 0.1 training_objective: "-v" log_freq: 1 early_eval_freq: 500 early_eval: 1000 eval_freq: 1000 save_freq: 2000 eval_freq_epoch: 5 save_freq_epoch: 10 ema_kwargs: decay: 0.9999 use_ema_warmup: true inv_gamma: 1. power: 0.75 val: batch_size_per_gpu: 1 nrow: 4 min_num_parts: 2 max_num_parts: 8 num_inference_steps: 50 max_num_expanded_coords: 1e8 use_flash_decoder: false rendering: radius: 4.0 num_views: 36 fps: 18 metric: cd_num_samples: 204800 cd_metric: "l2" f1_score_threshold: 0.1 default_cd: 1e6 default_f1: 0.0