from typing import Callable, List, Optional, Tuple, Union import torch import torch.nn.functional as F from diffusers.models.attention_processor import Attention from diffusers.utils import logging from diffusers.utils.import_utils import is_torch_npu_available, is_xformers_available from diffusers.utils.torch_utils import is_torch_version, maybe_allow_in_graph from einops import rearrange from torch import nn logger = logging.get_logger(__name__) # pylint: disable=invalid-name class FlashTripo2AttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is used in the Tripo2DiT model. It applies a s normalization layer and rotary embedding on query and key vector. """ def __init__(self, topk=True): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) self.topk = topk def qkv(self, attn, q, k, v, attn_mask, dropout_p, is_causal): if k.shape[-2] == 3072: topk = 1024 elif k.shape[-2] == 512: topk = 256 else: topk = k.shape[-2] // 3 if self.topk is True: q1 = q[:, :, ::100, :] sim = q1 @ k.transpose(-1, -2) sim = torch.mean(sim, -2) topk_ind = torch.topk(sim, dim=-1, k=topk).indices.squeeze(-2).unsqueeze(-1) topk_ind = topk_ind.expand(-1, -1, -1, v.shape[-1]) v0 = torch.gather(v, dim=-2, index=topk_ind) k0 = torch.gather(k, dim=-2, index=topk_ind) out = F.scaled_dot_product_attention(q, k0, v0) elif self.topk is False: out = F.scaled_dot_product_attention(q, k, v) else: idx, counts = self.topk start = 0 outs = [] for grid_coord, count in zip(idx, counts): end = start + count q_chunk = q[:, :, start:end, :] q1 = q_chunk[:, :, ::50, :] sim = q1 @ k.transpose(-1, -2) sim = torch.mean(sim, -2) topk_ind = torch.topk(sim, dim=-1, k=topk).indices.squeeze(-2).unsqueeze(-1) topk_ind = topk_ind.expand(-1, -1, -1, v.shape[-1]) v0 = torch.gather(v, dim=-2, index=topk_ind) k0 = torch.gather(k, dim=-2, index=topk_ind) out = F.scaled_dot_product_attention(q_chunk, k0, v0) outs.append(out) start += count out = torch.cat(outs, dim=-2) self.topk = False return out def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: from diffusers.models.embeddings import apply_rotary_emb residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view( batch_size, channel, height * width ).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask( attention_mask, sequence_length, batch_size ) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view( batch_size, attn.heads, -1, attention_mask.shape[-1] ) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose( 1, 2 ) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states( encoder_hidden_states ) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) # NOTE that tripo2 split heads first then split qkv or kv, like .view(..., attn.heads, 3, dim) # instead of .view(..., 3, attn.heads, dim). So we need to re-split here. if not attn.is_cross_attention: qkv = torch.cat((query, key, value), dim=-1) split_size = qkv.shape[-1] // attn.heads // 3 qkv = qkv.view(batch_size, -1, attn.heads, split_size * 3) query, key, value = torch.split(qkv, split_size, dim=-1) else: kv = torch.cat((key, value), dim=-1) split_size = kv.shape[-1] // attn.heads // 2 kv = kv.view(batch_size, -1, attn.heads, split_size * 2) key, value = torch.split(kv, split_size, dim=-1) head_dim = key.shape[-1] query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if image_rotary_emb is not None: query = apply_rotary_emb(query, image_rotary_emb) if not attn.is_cross_attention: key = apply_rotary_emb(key, image_rotary_emb) # flashvdm topk hidden_states = self.qkv(attn, query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False) hidden_states = hidden_states.transpose(1, 2).reshape( batch_size, -1, attn.heads * head_dim ) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape( batch_size, channel, height, width ) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class TripoSGAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is used in the TripoSG model. It applies a s normalization layer and rotary embedding on query and key vector. """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: from diffusers.models.embeddings import apply_rotary_emb residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view( batch_size, channel, height * width ).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask( attention_mask, sequence_length, batch_size ) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view( batch_size, attn.heads, -1, attention_mask.shape[-1] ) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose( 1, 2 ) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states( encoder_hidden_states ) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) # NOTE that pre-trained models split heads first then split qkv or kv, like .view(..., attn.heads, 3, dim) # instead of .view(..., 3, attn.heads, dim). So we need to re-split here. if not attn.is_cross_attention: qkv = torch.cat((query, key, value), dim=-1) split_size = qkv.shape[-1] // attn.heads // 3 qkv = qkv.view(batch_size, -1, attn.heads, split_size * 3) query, key, value = torch.split(qkv, split_size, dim=-1) else: kv = torch.cat((key, value), dim=-1) split_size = kv.shape[-1] // attn.heads // 2 kv = kv.view(batch_size, -1, attn.heads, split_size * 2) key, value = torch.split(kv, split_size, dim=-1) head_dim = key.shape[-1] query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if image_rotary_emb is not None: query = apply_rotary_emb(query, image_rotary_emb) if not attn.is_cross_attention: key = apply_rotary_emb(key, image_rotary_emb) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape( batch_size, -1, attn.heads * head_dim ) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape( batch_size, channel, height, width ) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class FusedTripoSGAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0) with fused projection layers. This is used in the HunyuanDiT model. It applies a s normalization layer and rotary embedding on query and key vector. """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "FusedTripoSGAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: from diffusers.models.embeddings import apply_rotary_emb residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view( batch_size, channel, height * width ).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask( attention_mask, sequence_length, batch_size ) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view( batch_size, attn.heads, -1, attention_mask.shape[-1] ) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose( 1, 2 ) # NOTE that pre-trained split heads first, then split qkv if encoder_hidden_states is None: qkv = attn.to_qkv(hidden_states) split_size = qkv.shape[-1] // attn.heads // 3 qkv = qkv.view(batch_size, -1, attn.heads, split_size * 3) query, key, value = torch.split(qkv, split_size, dim=-1) else: if attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states( encoder_hidden_states ) query = attn.to_q(hidden_states) kv = attn.to_kv(encoder_hidden_states) split_size = kv.shape[-1] // attn.heads // 2 kv = kv.view(batch_size, -1, attn.heads, split_size * 2) key, value = torch.split(kv, split_size, dim=-1) head_dim = key.shape[-1] query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if image_rotary_emb is not None: query = apply_rotary_emb(query, image_rotary_emb) if not attn.is_cross_attention: key = apply_rotary_emb(key, image_rotary_emb) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape( batch_size, -1, attn.heads * head_dim ) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape( batch_size, channel, height, width ) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states # Modified from https://github.com/VAST-AI-Research/MIDI-3D/blob/main/midi/models/attention_processor.py#L264 class PartCrafterAttnProcessor: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is used in the PartCrafter model. It applies a normalization layer and rotary embedding on query and key vector. """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, num_parts: Optional[Union[int, torch.Tensor]] = None, ) -> torch.Tensor: from diffusers.models.embeddings import apply_rotary_emb residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view( batch_size, channel, height * width ).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask( attention_mask, sequence_length, batch_size ) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view( batch_size, attn.heads, -1, attention_mask.shape[-1] ) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose( 1, 2 ) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states( encoder_hidden_states ) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) # NOTE that pre-trained models split heads first then split qkv or kv, like .view(..., attn.heads, 3, dim) # instead of .view(..., 3, attn.heads, dim). So we need to re-split here. if not attn.is_cross_attention: qkv = torch.cat((query, key, value), dim=-1) split_size = qkv.shape[-1] // attn.heads // 3 qkv = qkv.view(batch_size, -1, attn.heads, split_size * 3) query, key, value = torch.split(qkv, split_size, dim=-1) else: kv = torch.cat((key, value), dim=-1) split_size = kv.shape[-1] // attn.heads // 2 kv = kv.view(batch_size, -1, attn.heads, split_size * 2) key, value = torch.split(kv, split_size, dim=-1) head_dim = key.shape[-1] query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if image_rotary_emb is not None: query = apply_rotary_emb(query, image_rotary_emb) if not attn.is_cross_attention: key = apply_rotary_emb(key, image_rotary_emb) if isinstance(num_parts, torch.Tensor): # Assume list in training, do not consider classifier-free guidance idx = 0 hidden_states_list = [] for n_p in num_parts: k = key[idx : idx + n_p] v = value[idx : idx + n_p] q = query[idx : idx + n_p] idx += n_p if k.shape[2] == q.shape[2]: # Assuming self-attention # Here 'b' is always 1 k = rearrange( k, "(b ni) h nt c -> b h (ni nt) c", ni=n_p ) # [b, h, ni*nt, c] v = rearrange( v, "(b ni) h nt c -> b h (ni nt) c", ni=n_p ) # [b, h, ni*nt, c] else: # Assuming cross-attention # Here 'b' is always 1 k = k[::n_p] # [b, h, nt, c] v = v[::n_p] # [b, h, nt, c] # Here 'b' is always 1 q = rearrange( q, "(b ni) h nt c -> b h (ni nt) c", ni=n_p ) # [b, h, ni*nt, c] # the output of sdp = (batch, num_heads, seq_len, head_dim) h_s = F.scaled_dot_product_attention( q, k, v, dropout_p=0.0, is_causal=False, ) h_s = h_s.transpose(1, 2).reshape( n_p, -1, attn.heads * head_dim ) h_s = h_s.to(query.dtype) hidden_states_list.append(h_s) hidden_states = torch.cat(hidden_states_list, dim=0) elif isinstance(num_parts, int): # Assume single instance if key.shape[2] == query.shape[2]: # Assuming self-attention # Here we need 'b' when using classifier-free guidance key = rearrange( key, "(b ni) h nt c -> b h (ni nt) c", ni=num_parts ) # [b, h, ni*nt, c] value = rearrange( value, "(b ni) h nt c -> b h (ni nt) c", ni=num_parts ) # [b, h, ni*nt, c] else: # Assuming cross-attention # Here we need 'b' when using classifier-free guidance # Control signal is repeated ni times within each (b, ni) # We select only the first instance per group key = key[::num_parts] # [b, h, nt, c] value = value[::num_parts] # [b, h, nt, c] query = rearrange( query, "(b ni) h nt c -> b h (ni nt) c", ni=num_parts ) # [b, h, ni*nt, c] # the output of sdp = (batch, num_heads, seq_len, head_dim) hidden_states = F.scaled_dot_product_attention( query, key, value, dropout_p=0.0, is_causal=False, ) hidden_states = hidden_states.transpose(1, 2).reshape( batch_size, -1, attn.heads * head_dim ) hidden_states = hidden_states.to(query.dtype) else: raise ValueError( "num_parts must be a torch.Tensor or int, but got {}".format(type(num_parts)) ) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape( batch_size, channel, height, width ) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states