Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,077 Bytes
fc30cd8 c213ea5 a2bb6b2 5d4b5c6 fc30cd8 c213ea5 fc30cd8 c213ea5 f71882d c213ea5 cb8b67b a2bb6b2 cb8b67b a2bb6b2 291b4d1 a2bb6b2 c213ea5 f71882d fc30cd8 f71882d cb8b67b f71882d fc30cd8 cb8b67b c213ea5 cb8b67b c213ea5 e6b83ed c213ea5 cb8b67b c213ea5 fc30cd8 c213ea5 fc30cd8 c213ea5 9c0d8e3 c213ea5 41215b1 e80fde1 291367f e80fde1 0d0c157 c18d8a2 e794d57 277e783 e80fde1 9c0d8e3 e794d57 0d0c157 e80fde1 20cb7f7 9300410 0d0c157 c213ea5 39f1e30 47d0435 cb8b67b 39f1e30 cb8b67b 39f1e30 1dacbc2 20cb7f7 e76e753 703b4d2 a75a9db c213ea5 e76e753 d7535db c213ea5 bb5b3c0 c213ea5 01f75e7 c213ea5 703b4d2 3e4b1ec 703b4d2 3e4b1ec 703b4d2 1bf5c47 703b4d2 1505bdd 39bbec4 a998560 e4f0236 c88bb62 e4f0236 cb8b67b 703b4d2 cb8b67b 703b4d2 c88bb62 703b4d2 82aae9e 703b4d2 1b753e7 703b4d2 12c43d2 703b4d2 41215b1 b5603af 41215b1 703b4d2 e80fde1 0d0c157 703b4d2 277e783 c213ea5 277e783 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import spaces
import gradio as gr
import os
import sys
from typing import List
# sys.path.append(os.getcwd())
import numpy as np
from PIL import Image
import torch
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
from gradio_imageslider import ImageSlider
print(f'torch version:{torch.__version__}')
import torch.utils.checkpoint
from pytorch_lightning import seed_everything
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor
from huggingface_hub import hf_hub_download, snapshot_download
from pipelines.pipeline_seesr import StableDiffusionControlNetPipeline
from utils.wavelet_color_fix import wavelet_color_fix, adain_color_fix
from ram.models.ram_lora import ram
from ram import inference_ram as inference
from torchvision import transforms
from models.controlnet import ControlNetModel
from models.unet_2d_condition import UNet2DConditionModel
# VLM_NAME = "Qwen/Qwen2.5-VL-3B-Instruct"
# vlm_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
# VLM_NAME,
# torch_dtype="auto",
# device_map="auto" # immediately dispatches layers onto available GPUs
# )
# vlm_processor = AutoProcessor.from_pretrained(VLM_NAME)
def _generate_vlm_prompt(
vlm_model: Qwen2_5_VLForConditionalGeneration,
vlm_processor: AutoProcessor,
process_vision_info,
pil_image: Image.Image,
device: str = "cuda"
) -> str:
"""
Given two PIL.Image inputs:
- prev_pil: the “full” image at the previous recursion.
- zoomed_pil: the cropped+resized (zoom) image for this step.
Returns a single “recursive_multiscale” prompt string.
"""
message_text = (
"The give a detailed description of this image."
"describe each element with fine details."
)
messages = [
{"role": "system", "content": message_text},
{
"role": "user",
"content": [
{"type": "image", "image": pil_image},
],
},
]
text = vlm_processor.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = vlm_processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
).to(device)
generated = vlm_model.generate(**inputs, max_new_tokens=128)
trimmed = [
out_ids[len(in_ids):]
for in_ids, out_ids in zip(inputs.input_ids, generated)
]
out_text = vlm_processor.batch_decode(
trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
return out_text.strip()
tensor_transforms = transforms.Compose([
transforms.ToTensor(),
])
ram_transforms = transforms.Compose([
transforms.Resize((384, 384)),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
snapshot_download(
repo_id="alexnasa/SEESR",
local_dir="preset/models"
)
snapshot_download(
repo_id="stabilityai/stable-diffusion-2-1-base",
local_dir="preset/models/stable-diffusion-2-1-base"
)
snapshot_download(
repo_id="xinyu1205/recognize_anything_model",
local_dir="preset/models/"
)
# Load scheduler, tokenizer and models.
pretrained_model_path = 'preset/models/stable-diffusion-2-1-base'
seesr_model_path = 'preset/models/seesr'
scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
feature_extractor = CLIPImageProcessor.from_pretrained(f"{pretrained_model_path}/feature_extractor")
unet = UNet2DConditionModel.from_pretrained(seesr_model_path, subfolder="unet")
controlnet = ControlNetModel.from_pretrained(seesr_model_path, subfolder="controlnet")
# Freeze vae and text_encoder
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
unet.requires_grad_(False)
controlnet.requires_grad_(False)
# unet.to("cuda")
# controlnet.to("cuda")
# unet.enable_xformers_memory_efficient_attention()
# controlnet.enable_xformers_memory_efficient_attention()
# Get the validation pipeline
validation_pipeline = StableDiffusionControlNetPipeline(
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, feature_extractor=None,
unet=unet, controlnet=controlnet, scheduler=scheduler, safety_checker=None, requires_safety_checker=False,
)
validation_pipeline._init_tiled_vae(encoder_tile_size=1024,
decoder_tile_size=224)
weight_dtype = torch.float16
device = "cuda"
# Move text_encode and vae to gpu and cast to weight_dtype
text_encoder.to(device, dtype=weight_dtype)
vae.to(device, dtype=weight_dtype)
unet.to(device, dtype=weight_dtype)
controlnet.to(device, dtype=weight_dtype)
tag_model = ram(pretrained='preset/models/ram_swin_large_14m.pth',
pretrained_condition='preset/models/DAPE.pth',
image_size=384,
vit='swin_l')
tag_model.eval()
tag_model.to(device, dtype=weight_dtype)
def preprocess_image(input_image: Image.Image) -> Image.Image:
img = input_image.copy()
img.thumbnail((512, 512), Image.Resampling.BILINEAR)
return img
@spaces.GPU(duration=130)
def preprocess_n_magnify(input_image: Image.Image, progress=gr.Progress(track_tqdm=True),):
"""
Preprocess the input image and perform a single-step 4× magnification using the SeeSR pipeline.
This function first resizes the input to fit within a 512×512 thumbnail, then applies the full
magnification through ControlNet-guided diffusion—to produce a high-resolution, 4× upscaled image.
Args:
input_image (PIL.Image.Image): The source image to preprocess and magnify.
Returns:
tuple[PIL.Image.Image, PIL.Image.Image]:
- The resized (thumbnail) version of the input.
- The final 4× magnified output image.
"""
processed_img = preprocess_image(input_image)
img, magnified_img = magnify(processed_img, progress=progress)
return (img, magnified_img)
@spaces.GPU()
def magnify(
input_image: Image.Image,
user_prompt = "",
positive_prompt = "clean, high-resolution, 8k, best quality, masterpiece",
negative_prompt = "dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
num_inference_steps = 50,
scale_factor = 4,
cfg_scale = 7.5,
seed = 123,
latent_tiled_size = 320,
latent_tiled_overlap = 4,
sample_times = 1,
progress=gr.Progress(track_tqdm=True),
):
process_size = 512
resize_preproc = transforms.Compose([
transforms.Resize(process_size, interpolation=transforms.InterpolationMode.BILINEAR),
])
# user_prompt = _generate_vlm_prompt(
# vlm_model=vlm_model,
# vlm_processor=vlm_processor,
# process_vision_info=process_vision_info,
# pil_image=input_image,
# device=device,
# )
# with torch.no_grad():
seed_everything(seed)
generator = torch.Generator(device=device)
validation_prompt = ""
lq = tensor_transforms(input_image).unsqueeze(0).to(device).half()
lq = ram_transforms(lq)
res = inference(lq, tag_model)
ram_encoder_hidden_states = tag_model.generate_image_embeds(lq)
validation_prompt = f"{res[0]}, {positive_prompt},"
validation_prompt = validation_prompt if user_prompt=='' else f"{user_prompt}, {validation_prompt}"
ori_width, ori_height = input_image.size
resize_flag = False
rscale = scale_factor
input_image = input_image.resize((int(input_image.size[0] * rscale), int(input_image.size[1] * rscale)))
if min(input_image.size) < process_size:
input_image = resize_preproc(input_image)
input_image = input_image.resize((input_image.size[0] // 8 * 8, input_image.size[1] // 8 * 8))
width, height = input_image.size
resize_flag = True #
images = []
for _ in range(sample_times):
try:
with torch.autocast("cuda"):
image = validation_pipeline(
validation_prompt, input_image, negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps, generator=generator,
height=height, width=width,
guidance_scale=cfg_scale, conditioning_scale=1,
start_point='lr', start_steps=999,ram_encoder_hidden_states=ram_encoder_hidden_states,
latent_tiled_size=latent_tiled_size, latent_tiled_overlap=latent_tiled_overlap,
).images[0]
if True: # alpha<1.0:
image = wavelet_color_fix(image, input_image)
if resize_flag:
image = image.resize((ori_width * rscale, ori_height * rscale))
except Exception as e:
print(e)
image = Image.new(mode="RGB", size=(512, 512))
images.append(np.array(image))
return input_image, images[0]
css = """
#col-container {
margin: 0 auto;
max-width: 1024px;
}
"""
theme = gr.themes.Ocean()
with gr.Blocks(css=css, theme=theme) as demo:
with gr.Column(elem_id="col-container"):
with gr.Row():
gr.HTML(
"""
<div style="text-align: center;">
<p style="font-size:16px; display: inline; margin: 0;">
<strong>🖼️ Super-Resolution</strong>
</p>
</div>
"""
)
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", height=512)
run_button = gr.Button("🔎 Magnify 4x", variant="primary")
duration_time = gr.Text(label="duration time", value=60, visible=False)
with gr.Accordion("Options", visible=False):
user_prompt = gr.Textbox(label="User Prompt", value="")
positive_prompt = gr.Textbox(label="Positive Prompt", value="clean, high-resolution, 8k, best quality, masterpiece")
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality"
)
cfg_scale = gr.Slider(label="Classifier Free Guidance Scale (Set to 1.0 in sd-turbo)", minimum=1, maximum=10, value=7.5, step=0)
num_inference_steps = gr.Slider(label="Inference Steps", minimum=2, maximum=100, value=50, step=1)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=231)
sample_times = gr.Slider(label="Sample Times", minimum=1, maximum=10, step=1, value=1)
latent_tiled_size = gr.Slider(label="Diffusion Tile Size", minimum=128, maximum=480, value=320, step=1)
latent_tiled_overlap = gr.Slider(label="Diffusion Tile Overlap", minimum=4, maximum=16, value=4, step=1)
scale_factor = gr.Number(label="SR Scale", value=4)
with gr.Column():
result_gallery = ImageSlider(
interactive=False,
label="Magnified",
position=0.5
)
examples = gr.Examples(
examples=[
[
"preset/datasets/test_datasets/179.png",
],
[
"preset/datasets/test_datasets/cinema.png",
],
[
"preset/datasets/test_datasets/cartoon.png",
],
],
inputs=[
input_image,
],
outputs=[result_gallery],
fn=preprocess_n_magnify,
cache_examples=True,
)
inputs = [
input_image,
]
run_button.click(fn=preprocess_n_magnify, inputs=input_image, outputs=[result_gallery])
input_image.upload(fn=preprocess_image,inputs=input_image, outputs=input_image, show_api=False)
demo.launch(share=True, mcp_server=True) |