File size: 12,159 Bytes
f6e26e6
5725111
 
 
 
 
 
 
 
 
 
f6e26e6
 
 
6cc150a
 
c008d9c
6cc150a
 
 
c008d9c
6cc150a
 
c008d9c
6cc150a
c008d9c
6cc150a
c008d9c
6cc150a
 
c008d9c
5725111
 
7830888
5725111
 
 
e14280e
5725111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e14280e
f622070
e14280e
 
 
 
 
 
 
 
 
5725111
4d6da88
 
 
 
 
5725111
 
 
 
7830888
5725111
 
 
dda6c02
4d6da88
5725111
 
 
 
 
 
 
 
6cc150a
 
 
 
5725111
 
 
dda6c02
5725111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf3b00f
5725111
 
 
63f12be
6f7c413
4631aab
5725111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f7c413
 
5725111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d6da88
6f7c413
 
 
4d6da88
5725111
 
 
 
 
 
 
6f7c413
 
5725111
 
 
 
 
 
4d6da88
6f7c413
 
 
 
 
 
 
 
 
 
 
0d01c54
 
6f7c413
 
 
 
 
 
 
 
 
 
 
 
 
 
0d01c54
 
6f7c413
 
 
 
 
 
 
 
 
 
 
 
 
 
0d01c54
 
6f7c413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5725111
 
 
63f12be
6f7c413
4631aab
5725111
 
 
 
 
 
 
 
 
 
 
 
4d6da88
5725111
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import spaces
import gradio as gr
import os
import sys
from typing import List
# sys.path.append(os.getcwd())

import numpy as np
from PIL import Image

import torch

print(f'torch version:{torch.__version__}')

# import subprocess
# import importlib, site, sys

# # Re-discover all .pth/.egg-link files
# for sitedir in site.getsitepackages():
#     site.addsitedir(sitedir)

# # Clear caches so importlib will pick up new modules
# importlib.invalidate_caches()

# def sh(cmd): subprocess.check_call(cmd, shell=True)

# sh("pip install -U xformers --index-url https://download.pytorch.org/whl/cu126")

# # tell Python to re-scan site-packages now that the egg-link exists
# import importlib, site; site.addsitedir(site.getsitepackages()[0]); importlib.invalidate_caches()

import torch.utils.checkpoint
from pytorch_lightning import seed_everything
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor
from huggingface_hub import hf_hub_download, snapshot_download

from pipelines.pipeline_seesr import StableDiffusionControlNetPipeline

from utils.wavelet_color_fix import wavelet_color_fix, adain_color_fix

from ram.models.ram_lora import ram
from ram import inference_ram as inference
from torchvision import transforms
from models.controlnet import ControlNetModel
from models.unet_2d_condition import UNet2DConditionModel

tensor_transforms = transforms.Compose([
                transforms.ToTensor(),
            ])

ram_transforms = transforms.Compose([
            transforms.Resize((384, 384)),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
        ])

snapshot_download(
    repo_id="alexnasa/SEESR", 
    local_dir="preset/models"
)


snapshot_download(
    repo_id="stabilityai/sd-turbo", 
    local_dir="preset/models/sd-turbo"
)


snapshot_download(
    repo_id="xinyu1205/recognize_anything_model", 
    local_dir="preset/models/"
)

# Load scheduler, tokenizer and models.
pretrained_model_path = 'preset/models/sd-turbo'
seesr_model_path = 'preset/models/seesr'

scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
# feature_extractor = CLIPImageProcessor.from_pretrained(f"{pretrained_model_path}/feature_extractor")
unet = UNet2DConditionModel.from_pretrained_orig(pretrained_model_path, seesr_model_path, subfolder="unet")
controlnet = ControlNetModel.from_pretrained(seesr_model_path, subfolder="controlnet")

# Freeze vae and text_encoder
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
unet.requires_grad_(False)
controlnet.requires_grad_(False)

# unet.to("cuda")
# controlnet.to("cuda")
# unet.enable_xformers_memory_efficient_attention()
# controlnet.enable_xformers_memory_efficient_attention()

# Get the validation pipeline
validation_pipeline = StableDiffusionControlNetPipeline(
    vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, feature_extractor=None,
    unet=unet, controlnet=controlnet, scheduler=scheduler, safety_checker=None, requires_safety_checker=False,
)

validation_pipeline._init_tiled_vae(encoder_tile_size=1024,
                                    decoder_tile_size=224)
weight_dtype = torch.float16
device = "cuda"

# Move text_encode and vae to gpu and cast to weight_dtype
text_encoder.to(device, dtype=weight_dtype)
vae.to(device, dtype=weight_dtype)
unet.to(device, dtype=weight_dtype)
controlnet.to(device, dtype=weight_dtype)


tag_model = ram(pretrained='preset/models/ram_swin_large_14m.pth',
                pretrained_condition='preset/models/DAPE.pth',
                image_size=384,
                vit='swin_l')
tag_model.eval()
tag_model.to(device, dtype=weight_dtype)

@spaces.GPU()
def process(
    input_image: Image.Image,
    user_prompt: str,
    use_KDS: bool,
    bandwidth: float,
    num_particles: int,
    positive_prompt: str,
    negative_prompt: str,
    num_inference_steps: int,
    scale_factor: int,
    cfg_scale: float,
    seed: int,
    latent_tiled_size: int,
    latent_tiled_overlap: int,
    sample_times: int
    ) -> List[np.ndarray]:
    process_size = 512
    resize_preproc = transforms.Compose([
        transforms.Resize(process_size, interpolation=transforms.InterpolationMode.BILINEAR),
    ])

    # with torch.no_grad():
    seed_everything(seed)
    generator = torch.Generator(device=device)

    validation_prompt = ""
    lq = tensor_transforms(input_image).unsqueeze(0).to(device).half()
    lq = ram_transforms(lq)
    res = inference(lq, tag_model)
    ram_encoder_hidden_states = tag_model.generate_image_embeds(lq)
    validation_prompt = f"{res[0]}, {positive_prompt},"
    validation_prompt = validation_prompt if user_prompt=='' else f"{user_prompt}, {validation_prompt}"

    ori_width, ori_height = input_image.size
    resize_flag = False

    rscale = scale_factor
    input_image = input_image.resize((int(input_image.size[0] * rscale), int(input_image.size[1] * rscale)))

    if min(input_image.size) < process_size:
        input_image = resize_preproc(input_image)

    input_image = input_image.resize((input_image.size[0] // 8 * 8, input_image.size[1] // 8 * 8))
    width, height = input_image.size
    resize_flag = True  #

    images = []
    for _ in range(sample_times):
        try:
            with torch.autocast("cuda"):
                image = validation_pipeline(
                    validation_prompt, input_image, negative_prompt=negative_prompt,
                    num_inference_steps=num_inference_steps, generator=generator,
                    height=height, width=width,
                    guidance_scale=cfg_scale,  conditioning_scale=1,
                    start_point='lr', start_steps=999,ram_encoder_hidden_states=ram_encoder_hidden_states,
                    latent_tiled_size=latent_tiled_size, latent_tiled_overlap=latent_tiled_overlap, 
                    use_KDS=use_KDS, bandwidth=bandwidth, num_particles=num_particles
                ).images[0]

            if True:  # alpha<1.0:
                image = wavelet_color_fix(image, input_image)

            if resize_flag:
                image = image.resize((ori_width * rscale, ori_height * rscale))
        except Exception as e:
            print(e)
            image = Image.new(mode="RGB", size=(512, 512))
        images.append(np.array(image))
    return images


#
MARKDOWN = \
"""
## SeeSR: Towards Semantics-Aware Real-World Image Super-Resolution

[GitHub](https://github.com/cswry/SeeSR) | [Paper](https://arxiv.org/abs/2311.16518)

If SeeSR is helpful for you, please help star the GitHub Repo. Thanks!
"""

block = gr.Blocks().queue()
with block:
    with gr.Row():
        gr.Markdown(MARKDOWN)
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(type="pil")
            num_particles = gr.Slider(label="Num of Partickes", minimum=1, maximum=16, step=1, value=10)
            bandwidth = gr.Slider(label="Bandwidth", minimum=0.1, maximum=0.8, step=0.1, value=0.1)
            use_KDS = gr.Checkbox(label="Use Kernel Density Steering")  
            run_button = gr.Button("Run")
            with gr.Accordion("Options", open=True):
                user_prompt = gr.Textbox(label="User Prompt", value="")
                positive_prompt = gr.Textbox(label="Positive Prompt", value="clean, high-resolution, 8k, best quality, masterpiece")
                negative_prompt = gr.Textbox(
                    label="Negative Prompt",
                    value="dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality"
                )
                cfg_scale = gr.Slider(label="Classifier Free Guidance Scale (Set to 1.0 in sd-turbo)", minimum=1, maximum=10, value=7.5, step=0)
                num_inference_steps = gr.Slider(label="Inference Steps", minimum=2, maximum=100, value=50, step=1)
                seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=231)
                sample_times = gr.Slider(label="Sample Times", minimum=1, maximum=10, step=1, value=1)
                latent_tiled_size = gr.Slider(label="Diffusion Tile Size", minimum=128, maximum=480, value=320, step=1)
                latent_tiled_overlap = gr.Slider(label="Diffusion Tile Overlap", minimum=4, maximum=16, value=4, step=1)
                scale_factor = gr.Number(label="SR Scale", value=4)
        with gr.Column():
            result_gallery = gr.Gallery(label="Output", show_label=False, elem_id="gallery")
            examples = gr.Examples(
                examples=[
                    [
                        "preset/datasets/test_datasets/woman.png", 
                        "",
                        False,
                        0.1,
                        4,
                        "clean, high-resolution, 8k, best quality, masterpiece",
                        "dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
                        4,
                        4,
                        1.0,
                        123,
                        320,
                        4,
                        1,
                    ],
                    [
                        "preset/datasets/test_datasets/woman.png", 
                        "",
                        True,
                        0.1,
                        4,
                        "clean, high-resolution, 8k, best quality, masterpiece",
                        "dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
                        4,
                        4,
                        1.0,
                        123,
                        320,
                        4,
                        1,
                    ],
                    [
                        "preset/datasets/test_datasets/woman.png", 
                        "",
                        True,
                        0.1,
                        16,
                        "clean, high-resolution, 8k, best quality, masterpiece",
                        "dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
                        4,
                        4,
                        1.0,
                        123,
                        320,
                        4,
                        1,
                    ],                    
                ],
                inputs=[
                    input_image,
                    user_prompt,
                    use_KDS,
                    bandwidth,
                    num_particles,
                    positive_prompt,
                    negative_prompt,
                    num_inference_steps,
                    scale_factor,
                    cfg_scale,
                    seed,
                    latent_tiled_size,
                    latent_tiled_overlap,
                    sample_times,
                ],
                outputs=[result_gallery],
                fn=process,
                cache_examples=True,
            )
    inputs = [
        input_image,
        user_prompt,
        use_KDS,
        bandwidth,
        num_particles,
        positive_prompt,
        negative_prompt,
        num_inference_steps,
        scale_factor,
        cfg_scale,
        seed,
        latent_tiled_size,
        latent_tiled_overlap,
        sample_times,
    ]
    run_button.click(fn=process, inputs=inputs, outputs=[result_gallery])

block.launch(share=True)