File size: 6,329 Bytes
c382c9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import cv2
import os
import glob
import torch
from torch.utils.data import Dataset
from torchvision import transforms
import random
import numpy as np
import math

from basicsr.data.degradations import circular_lowpass_kernel, random_mixed_kernels
from basicsr.data.transforms import augment
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor

from PIL import Image



class SimpleDataset(Dataset):
    def __init__(self, opt, fix_size=512): 
        
        self.opt = opt
        self.image_root = opt['gt_path']
        self.fix_size = fix_size
        exts = ['*.jpg', '*.png']
        self.image_list = []
        for image_root in self.image_root:
            for ext in exts:
                image_list = glob.glob(os.path.join(image_root, ext))
                self.image_list += image_list
                # if add lsdir dataset
                image_list = glob.glob(os.path.join(image_root, '00*', ext))
                self.image_list += image_list
        
        self.crop_preproc = transforms.Compose([
            # transforms.CenterCrop(fix_size),
            transforms.Resize(fix_size)
            # transforms.RandomHorizontalFlip(),
        ])

        self.img_preproc = transforms.Compose([
            transforms.ToTensor(),
        ])

        # blur settings for the first degradation
        self.blur_kernel_size = opt['blur_kernel_size']
        self.kernel_list = opt['kernel_list']
        self.kernel_prob = opt['kernel_prob']  # a list for each kernel probability
        self.blur_sigma = opt['blur_sigma']
        self.betag_range = opt['betag_range']  # betag used in generalized Gaussian blur kernels
        self.betap_range = opt['betap_range']  # betap used in plateau blur kernels
        self.sinc_prob = opt['sinc_prob']  # the probability for sinc filters

        # blur settings for the second degradation
        self.blur_kernel_size2 = opt['blur_kernel_size2']
        self.kernel_list2 = opt['kernel_list2']
        self.kernel_prob2 = opt['kernel_prob2']
        self.blur_sigma2 = opt['blur_sigma2']
        self.betag_range2 = opt['betag_range2']
        self.betap_range2 = opt['betap_range2']
        self.sinc_prob2 = opt['sinc_prob2']

        # a final sinc filter
        self.final_sinc_prob = opt['final_sinc_prob']

        self.kernel_range = [2 * v + 1 for v in range(3, 11)]  # kernel size ranges from 7 to 21
        # TODO: kernel range is now hard-coded, should be in the configure file
        self.pulse_tensor = torch.zeros(21, 21).float()  # convolving with pulse tensor brings no blurry effect
        self.pulse_tensor[10, 10] = 1

        print(f'The dataset length: {len(self.image_list)}')


    def __getitem__(self, index):
        image = Image.open(self.image_list[index]).convert('RGB') 
        # width, height = image.size  
        # if width > height:
        #     width_after = self.fix_size
        #     height_after = int(height*width_after/width)
        # elif height > width:
        #     height_after = self.fix_size
        #     width_after = int(width*height_after/height)
        # elif height == width:
        #     height_after = self.fix_size
        #     width_after = self.fix_size
        image = image.resize((self.fix_size, self.fix_size),Image.LANCZOS)
        # image = self.crop_preproc(image)
        image = self.img_preproc(image)

        # ------------------------ Generate kernels (used in the first degradation) ------------------------ #
        kernel_size = random.choice(self.kernel_range)
        if np.random.uniform() < self.opt['sinc_prob']:
            # this sinc filter setting is for kernels ranging from [7, 21]
            if kernel_size < 13:
                omega_c = np.random.uniform(np.pi / 3, np.pi)
            else:
                omega_c = np.random.uniform(np.pi / 5, np.pi)
            kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
        else:
            kernel = random_mixed_kernels(
                self.kernel_list,
                self.kernel_prob,
                kernel_size,
                self.blur_sigma,
                self.blur_sigma, [-math.pi, math.pi],
                self.betag_range,
                self.betap_range,
                noise_range=None)
        # pad kernel
        pad_size = (21 - kernel_size) // 2
        kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size)))

        # ------------------------ Generate kernels (used in the second degradation) ------------------------ #
        kernel_size = random.choice(self.kernel_range)
        if np.random.uniform() < self.opt['sinc_prob2']:
            if kernel_size < 13:
                omega_c = np.random.uniform(np.pi / 3, np.pi)
            else:
                omega_c = np.random.uniform(np.pi / 5, np.pi)
            kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
        else:
            kernel2 = random_mixed_kernels(
                self.kernel_list2,
                self.kernel_prob2,
                kernel_size,
                self.blur_sigma2,
                self.blur_sigma2, [-math.pi, math.pi],
                self.betag_range2,
                self.betap_range2,
                noise_range=None)

        # pad kernel
        pad_size = (21 - kernel_size) // 2
        kernel2 = np.pad(kernel2, ((pad_size, pad_size), (pad_size, pad_size)))

        # ------------------------------------- the final sinc kernel ------------------------------------- #
        if np.random.uniform() < self.opt['final_sinc_prob']:
            kernel_size = random.choice(self.kernel_range)
            omega_c = np.random.uniform(np.pi / 3, np.pi)
            sinc_kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=21)
            sinc_kernel = torch.FloatTensor(sinc_kernel)
        else:
            sinc_kernel = self.pulse_tensor

        # BGR to RGB, HWC to CHW, numpy to tensor
        # img_gt = img2tensor([img_gt], bgr2rgb=True, float32=True)[0]
        kernel = torch.FloatTensor(kernel)
        kernel2 = torch.FloatTensor(kernel2)

        return_d = {'gt': image, 'kernel1': kernel, 'kernel2': kernel2, 'sinc_kernel': sinc_kernel, 'lq_path': self.image_list[index]}
        return return_d
        

    def __len__(self):
        return len(self.image_list)