Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,853 Bytes
15fa7b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md
from cog import BasePredictor, Input, Path
import os
import time
import subprocess
from typing import List
import numpy as np
from PIL import Image
import torch
import torch.utils.checkpoint
from pytorch_lightning import seed_everything
from diffusers import AutoencoderKL, DDPMScheduler
from diffusers.utils.import_utils import is_xformers_available
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor
from pipelines.pipeline_seesr import StableDiffusionControlNetPipeline
from utils.wavelet_color_fix import wavelet_color_fix
from ram.models.ram_lora import ram
from ram import inference_ram as inference
from torchvision import transforms
from models.controlnet import ControlNetModel
from models.unet_2d_condition import UNet2DConditionModel
MODEL_URL = "https://weights.replicate.delivery/default/stabilityai/sd-2-1-base.tar"
tensor_transforms = transforms.Compose([
transforms.ToTensor(),
])
ram_transforms = transforms.Compose([
transforms.Resize((384, 384)),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
device = "cuda"
def download_weights(url, dest):
start = time.time()
print("downloading url: ", url)
print("downloading to: ", dest)
subprocess.check_call(["pget", "-x", url, dest], close_fds=False)
print("downloading took: ", time.time() - start)
class Predictor(BasePredictor):
def setup(self) -> None:
"""Load the model into memory to make running multiple predictions efficient"""
# Load scheduler, tokenizer and models.
pretrained_model_path = 'preset/models/stable-diffusion-2-1-base'
seesr_model_path = 'preset/models/seesr'
# Download SD-2-1 weights
if not os.path.exists(pretrained_model_path):
download_weights(MODEL_URL, pretrained_model_path)
scheduler = DDPMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
feature_extractor = CLIPImageProcessor.from_pretrained(f"{pretrained_model_path}/feature_extractor")
unet = UNet2DConditionModel.from_pretrained(seesr_model_path, subfolder="unet")
controlnet = ControlNetModel.from_pretrained(seesr_model_path, subfolder="controlnet")
# Freeze vae and text_encoder
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
unet.requires_grad_(False)
controlnet.requires_grad_(False)
if is_xformers_available():
unet.enable_xformers_memory_efficient_attention()
controlnet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
# Get the validation pipeline
validation_pipeline = StableDiffusionControlNetPipeline(
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, feature_extractor=feature_extractor,
unet=unet, controlnet=controlnet, scheduler=scheduler, safety_checker=None, requires_safety_checker=False,
)
validation_pipeline._init_tiled_vae(encoder_tile_size=1024,decoder_tile_size=224)
self.validation_pipeline = validation_pipeline
weight_dtype = torch.float16
# Move text_encode and vae to gpu and cast to weight_dtype
text_encoder.to(device, dtype=weight_dtype)
vae.to(device, dtype=weight_dtype)
unet.to(device, dtype=weight_dtype)
controlnet.to(device, dtype=weight_dtype)
tag_model = ram(pretrained='preset/models/ram_swin_large_14m.pth',
pretrained_condition='preset/models/DAPE.pth',
image_size=384,
vit='swin_l')
tag_model.eval()
self.tag_model = tag_model.to(device, dtype=weight_dtype)
# @torch.no_grad()
def process(
self,
input_image: Image.Image,
user_prompt: str,
positive_prompt: str,
negative_prompt: str,
num_inference_steps: int,
scale_factor: int,
cfg_scale: float,
seed: int,
latent_tiled_size: int,
latent_tiled_overlap: int,
sample_times: int
) -> List[np.ndarray]:
process_size = 512
resize_preproc = transforms.Compose([
transforms.Resize(process_size, interpolation=transforms.InterpolationMode.BILINEAR),
])
seed_everything(seed)
generator = torch.Generator(device=device)
validation_prompt = ""
lq = tensor_transforms(input_image).unsqueeze(0).to(device).half()
lq = ram_transforms(lq)
res = inference(lq, self.tag_model)
ram_encoder_hidden_states = self.tag_model.generate_image_embeds(lq)
validation_prompt = f"{res[0]}, {positive_prompt},"
validation_prompt = validation_prompt if user_prompt=='' else f"{user_prompt}, {validation_prompt}"
ori_width, ori_height = input_image.size
resize_flag = False
rscale = scale_factor
input_image = input_image.resize((int(input_image.size[0] * rscale), int(input_image.size[1] * rscale)))
if min(input_image.size) < process_size:
input_image = resize_preproc(input_image)
input_image = input_image.resize((input_image.size[0] // 8 * 8, input_image.size[1] // 8 * 8))
width, height = input_image.size
resize_flag = True
images = []
for _ in range(sample_times):
try:
with torch.autocast("cuda"):
image = self.validation_pipeline(
validation_prompt, input_image, negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps, generator=generator,
height=height, width=width,
guidance_scale=cfg_scale, conditioning_scale=1,
start_point='lr', start_steps=999,ram_encoder_hidden_states=ram_encoder_hidden_states,
latent_tiled_size=latent_tiled_size, latent_tiled_overlap=latent_tiled_overlap
).images[0]
if True: # alpha<1.0:
image = wavelet_color_fix(image, input_image)
if resize_flag:
image = image.resize((ori_width * rscale, ori_height * rscale))
except Exception as e:
print(e)
image = Image.new(mode="RGB", size=(512, 512))
images.append(np.array(image))
return images
@torch.inference_mode()
def predict(
self,
image: Path = Input(description="Input image"),
user_prompt: str = Input(description="Prompt to condition on", default=""),
positive_prompt: str = Input(description="Prompt to add", default="clean, high-resolution, 8k"),
negative_prompt: str = Input(description="Prompt to remove", default="dotted, noise, blur, lowres, smooth"),
cfg_scale: float = Input(description="Guidance scale, set value to >1 to use", default=5.5, ge=0.1, le=10.0),
num_inference_steps: int = Input(description="Number of inference steps", default=50, ge=10, le=100),
sample_times: int = Input(description="Number of samples to generate", default=1, ge=1, le=10),
latent_tiled_size: int = Input(description="Size of latent tiles", default=320, ge=128, le=480),
latent_tiled_overlap: int = Input(description="Overlap of latent tiles", default=4, ge=4, le=16),
scale_factor: int = Input(description="Scale factor", default=4),
seed: int = Input(description="Seed", default=231, ge=0, le=2147483647),
) -> List[Path]:
"""Run a single prediction on the model"""
pil_image = Image.open(image).convert("RGB")
imgs = self.process(
pil_image, user_prompt, positive_prompt, negative_prompt, num_inference_steps,
scale_factor, cfg_scale, seed, latent_tiled_size, latent_tiled_overlap, sample_times)
# Clear output folder
os.system("rm -rf /tmp/output")
# Create output folder
os.system("mkdir /tmp/output")
# Save images to output folder
output_paths = []
for i, img in enumerate(imgs):
img = Image.fromarray(img)
output_path = f"/tmp/output/{i}.png"
img.save(output_path)
output_paths.append(Path(output_path))
return output_paths |