Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,280 Bytes
15fa7b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
'''
* SeeSR: Towards Semantics-Aware Real-World Image Super-Resolution
* Modified from diffusers by Rongyuan Wu
* 24/12/2023
'''
import os
import sys
sys.path.append(os.getcwd())
import cv2
import glob
import argparse
import numpy as np
from PIL import Image
import torch
import torch.utils.checkpoint
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import AutoencoderKL, DDPMScheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor
from pipelines.pipeline_seesr import StableDiffusionControlNetPipeline
from utils.misc import load_dreambooth_lora
from utils.wavelet_color_fix import wavelet_color_fix, adain_color_fix
from ram.models.ram_lora import ram
from ram import inference_ram as inference
from ram import get_transform
from typing import Mapping, Any
from torchvision import transforms
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
logger = get_logger(__name__, log_level="INFO")
tensor_transforms = transforms.Compose([
transforms.ToTensor(),
])
ram_transforms = transforms.Compose([
transforms.Resize((384, 384)),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
def load_state_dict_diffbirSwinIR(model: nn.Module, state_dict: Mapping[str, Any], strict: bool=False) -> None:
state_dict = state_dict.get("state_dict", state_dict)
is_model_key_starts_with_module = list(model.state_dict().keys())[0].startswith("module.")
is_state_dict_key_starts_with_module = list(state_dict.keys())[0].startswith("module.")
if (
is_model_key_starts_with_module and
(not is_state_dict_key_starts_with_module)
):
state_dict = {f"module.{key}": value for key, value in state_dict.items()}
if (
(not is_model_key_starts_with_module) and
is_state_dict_key_starts_with_module
):
state_dict = {key[len("module."):]: value for key, value in state_dict.items()}
model.load_state_dict(state_dict, strict=strict)
def load_seesr_pipeline(args, accelerator, enable_xformers_memory_efficient_attention):
from models.controlnet import ControlNetModel
from models.unet_2d_condition import UNet2DConditionModel
# Load scheduler, tokenizer and models.
scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_path, subfolder="scheduler")
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_path, subfolder="text_encoder")
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_path, subfolder="tokenizer")
vae = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="vae")
feature_extractor = CLIPImageProcessor.from_pretrained(f"{args.pretrained_model_path}/feature_extractor")
unet = UNet2DConditionModel.from_pretrained_orig(args.pretrained_model_path, args.seesr_model_path, subfolder="unet", use_image_cross_attention=True)
controlnet = ControlNetModel.from_pretrained(args.seesr_model_path, subfolder="controlnet")
# Freeze vae and text_encoder
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
unet.requires_grad_(False)
controlnet.requires_grad_(False)
if enable_xformers_memory_efficient_attention:
if is_xformers_available():
unet.enable_xformers_memory_efficient_attention()
controlnet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
# Get the validation pipeline
validation_pipeline = StableDiffusionControlNetPipeline(
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, feature_extractor=feature_extractor,
unet=unet, controlnet=controlnet, scheduler=scheduler, safety_checker=None, requires_safety_checker=False,
)
validation_pipeline._init_tiled_vae(encoder_tile_size=args.vae_encoder_tiled_size, decoder_tile_size=args.vae_decoder_tiled_size)
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move text_encode and vae to gpu and cast to weight_dtype
text_encoder.to(accelerator.device, dtype=weight_dtype)
vae.to(accelerator.device, dtype=weight_dtype)
unet.to(accelerator.device, dtype=weight_dtype)
controlnet.to(accelerator.device, dtype=weight_dtype)
return validation_pipeline
def load_tag_model(args, device='cuda'):
model = ram(pretrained='preset/models/ram_swin_large_14m.pth',
pretrained_condition=args.ram_ft_path,
image_size=384,
vit='swin_l')
model.eval()
model.to(device)
return model
def get_validation_prompt(args, image, model, device='cuda'):
validation_prompt = ""
lq = tensor_transforms(image).unsqueeze(0).to(device)
lq = ram_transforms(lq)
res = inference(lq, model)
ram_encoder_hidden_states = model.generate_image_embeds(lq)
validation_prompt = f"{res[0]}, {args.prompt},"
return validation_prompt, ram_encoder_hidden_states
def main(args, enable_xformers_memory_efficient_attention=True,):
txt_path = os.path.join(args.output_dir, 'txt')
os.makedirs(txt_path, exist_ok=True)
accelerator = Accelerator(
mixed_precision=args.mixed_precision,
)
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the output folder creation
if accelerator.is_main_process:
os.makedirs(args.output_dir, exist_ok=True)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("SeeSR")
pipeline = load_seesr_pipeline(args, accelerator, enable_xformers_memory_efficient_attention)
model = load_tag_model(args, accelerator.device)
if accelerator.is_main_process:
generator = torch.Generator(device=accelerator.device)
if args.seed is not None:
generator.manual_seed(args.seed)
if os.path.isdir(args.image_path):
image_names = sorted(glob.glob(f'{args.image_path}/*.*'))
else:
image_names = [args.image_path]
for image_idx, image_name in enumerate(image_names[:]):
print(f'================== process {image_idx} imgs... ===================')
validation_image = Image.open(image_name).convert("RGB")
validation_prompt, ram_encoder_hidden_states = get_validation_prompt(args, validation_image, model)
validation_prompt += args.added_prompt # clean, extremely detailed, best quality, sharp, clean
negative_prompt = args.negative_prompt #dirty, messy, low quality, frames, deformed,
if args.save_prompts:
txt_save_path = f"{txt_path}/{os.path.basename(image_name).split('.')[0]}.txt"
file = open(txt_save_path, "w")
file.write(validation_prompt)
file.close()
print(f'{validation_prompt}')
ori_width, ori_height = validation_image.size
resize_flag = False
rscale = args.upscale
if ori_width < args.process_size//rscale or ori_height < args.process_size//rscale:
scale = (args.process_size//rscale)/min(ori_width, ori_height)
tmp_image = validation_image.resize((int(scale*ori_width), int(scale*ori_height)))
validation_image = tmp_image
resize_flag = True
validation_image = validation_image.resize((validation_image.size[0]*rscale, validation_image.size[1]*rscale))
validation_image = validation_image.resize((validation_image.size[0]//8*8, validation_image.size[1]//8*8))
width, height = validation_image.size
resize_flag = True #
print(f'input size: {height}x{width}')
for sample_idx in range(args.sample_times):
os.makedirs(f'{args.output_dir}/sample{str(sample_idx).zfill(2)}/', exist_ok=True)
for sample_idx in range(args.sample_times):
with torch.autocast("cuda"):
image = pipeline(
validation_prompt, validation_image, num_inference_steps=args.num_inference_steps, generator=generator, height=height, width=width,
guidance_scale=args.guidance_scale, negative_prompt=negative_prompt, conditioning_scale=args.conditioning_scale,
start_point=args.start_point, ram_encoder_hidden_states=ram_encoder_hidden_states,
latent_tiled_size=args.latent_tiled_size, latent_tiled_overlap=args.latent_tiled_overlap,
args=args,
).images[0]
if args.align_method == 'nofix':
image = image
else:
if args.align_method == 'wavelet':
image = wavelet_color_fix(image, validation_image)
elif args.align_method == 'adain':
image = adain_color_fix(image, validation_image)
if resize_flag:
image = image.resize((ori_width*rscale, ori_height*rscale))
name, ext = os.path.splitext(os.path.basename(image_name))
image.save(f'{args.output_dir}/sample{str(sample_idx).zfill(2)}/{name}.png')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--seesr_model_path", type=str, default=None)
parser.add_argument("--ram_ft_path", type=str, default=None)
parser.add_argument("--pretrained_model_path", type=str, default=None)
parser.add_argument("--prompt", type=str, default="") # user can add self-prompt to improve the results
parser.add_argument("--added_prompt", type=str, default="clean, high-resolution, 8k")
parser.add_argument("--negative_prompt", type=str, default="dotted, noise, blur, lowres, smooth")
parser.add_argument("--image_path", type=str, default=None)
parser.add_argument("--output_dir", type=str, default=None)
parser.add_argument("--mixed_precision", type=str, default="fp16") # no/fp16/bf16
parser.add_argument("--guidance_scale", type=float, default=1.0)
parser.add_argument("--conditioning_scale", type=float, default=1.0)
parser.add_argument("--blending_alpha", type=float, default=1.0)
parser.add_argument("--num_inference_steps", type=int, default=2)
parser.add_argument("--process_size", type=int, default=512)
parser.add_argument("--vae_decoder_tiled_size", type=int, default=224) # latent size, for 24G
parser.add_argument("--vae_encoder_tiled_size", type=int, default=1024) # image size, for 13G
parser.add_argument("--latent_tiled_size", type=int, default=96)
parser.add_argument("--latent_tiled_overlap", type=int, default=32)
parser.add_argument("--upscale", type=int, default=4)
parser.add_argument("--seed", type=int, default=None)
parser.add_argument("--sample_times", type=int, default=1)
parser.add_argument("--align_method", type=str, choices=['wavelet', 'adain', 'nofix'], default='adain')
parser.add_argument("--start_steps", type=int, default=999) # defaults set to 999.
parser.add_argument("--start_point", type=str, choices=['lr', 'noise'], default='lr') # LR Embedding Strategy, choose 'lr latent + 999 steps noise' as diffusion start point.
parser.add_argument("--save_prompts", action='store_true')
args = parser.parse_args()
main(args)
|