Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,271 Bytes
0ced7d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
'''
* SeeSR: Towards Semantics-Aware Real-World Image Super-Resolution
* Modified from diffusers by Rongyuan Wu
* 24/12/2023
'''
import os
import sys
sys.path.append(os.getcwd())
import cv2
import torch
import torch.nn.functional as F
from pytorch_lightning import seed_everything
import argparse
from basicsr.data.realesrgan_dataset import RealESRGANDataset
from ram.models import ram
from ram import inference_ram as inference
parser = argparse.ArgumentParser()
parser.add_argument("--gt_path", nargs='+', default=['PATH 1', 'PATH 2'], help='the path of high-resolution images')
parser.add_argument("--save_dir", type=str, default='preset/datasets/train_datasets/training_for_seesr', help='the save path of the training dataset.')
parser.add_argument("--start_gpu", type=int, default=1, help='if you have 5 GPUs, you can set it to 1/2/3/4/5 on five gpus for parallel processing., which will save your time. ')
parser.add_argument("--batch_size", type=int, default=10, help='smaller batch size means much time but more extensive degradation for making the training dataset.')
parser.add_argument("--epoch", type=int, default=1, help='decide how many epochs to create for the dataset.')
args = parser.parse_args()
print(f'====== START GPU: {args.start_gpu} =========')
seed_everything(24+args.start_gpu*1000)
from torchvision.transforms import Normalize, Compose
args_training_dataset = {}
# Please set your gt path here. If you have multi dirs, you can set it as ['PATH1', 'PATH2', 'PATH3', ...]
args_training_dataset['gt_path'] = args.gt_path
#################### REALESRGAN SETTING ###########################
args_training_dataset['queue_size'] = 160
args_training_dataset['crop_size'] = 512
args_training_dataset['io_backend'] = {}
args_training_dataset['io_backend']['type'] = 'disk'
args_training_dataset['blur_kernel_size'] = 21
args_training_dataset['kernel_list'] = ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
args_training_dataset['kernel_prob'] = [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
args_training_dataset['sinc_prob'] = 0.1
args_training_dataset['blur_sigma'] = [0.2, 3]
args_training_dataset['betag_range'] = [0.5, 4]
args_training_dataset['betap_range'] = [1, 2]
args_training_dataset['blur_kernel_size2'] = 11
args_training_dataset['kernel_list2'] = ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
args_training_dataset['kernel_prob2'] = [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
args_training_dataset['sinc_prob2'] = 0.1
args_training_dataset['blur_sigma2'] = [0.2, 1.5]
args_training_dataset['betag_range2'] = [0.5, 4.0]
args_training_dataset['betap_range2'] = [1, 2]
args_training_dataset['final_sinc_prob'] = 0.8
args_training_dataset['use_hflip'] = True
args_training_dataset['use_rot'] = False
train_dataset = RealESRGANDataset(args_training_dataset)
batch_size = args.batch_size
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
shuffle=False,
batch_size=batch_size,
num_workers=11,
drop_last=True,
)
#################### REALESRGAN SETTING ###########################
args_degradation = {}
# the first degradation process
args_degradation['resize_prob'] = [0.2, 0.7, 0.1] # up, down, keep
args_degradation['resize_range'] = [0.15, 1.5]
args_degradation['gaussian_noise_prob'] = 0.5
args_degradation['noise_range'] = [1, 30]
args_degradation['poisson_scale_range'] = [0.05, 3.0]
args_degradation['gray_noise_prob'] = 0.4
args_degradation['jpeg_range'] = [30, 95]
# the second degradation process
args_degradation['second_blur_prob'] = 0.8
args_degradation['resize_prob2'] = [0.3, 0.4, 0.3] # up, down, keep
args_degradation['resize_range2'] = [0.3, 1.2]
args_degradation['gaussian_noise_prob2'] = 0.5
args_degradation['noise_range2'] = [1, 25]
args_degradation['poisson_scale_range2'] = [0.05, 2.5]
args_degradation['gray_noise_prob2'] = 0.4
args_degradation['jpeg_range2'] = [30, 95]
args_degradation['gt_size']= 512
args_degradation['no_degradation_prob']= 0.01
from basicsr.utils import DiffJPEG, USMSharp
from basicsr.utils.img_process_util import filter2D
from basicsr.data.transforms import paired_random_crop, triplet_random_crop
from basicsr.data.degradations import random_add_gaussian_noise_pt, random_add_poisson_noise_pt, random_add_speckle_noise_pt, random_add_saltpepper_noise_pt, bivariate_Gaussian
import random
import torch.nn.functional as F
def realesrgan_degradation(batch, args_degradation, use_usm=True, sf=4, resize_lq=True):
jpeger = DiffJPEG(differentiable=False).cuda()
usm_sharpener = USMSharp().cuda() # do usm sharpening
im_gt = batch['gt'].cuda()
if use_usm:
im_gt = usm_sharpener(im_gt)
im_gt = im_gt.to(memory_format=torch.contiguous_format).float()
kernel1 = batch['kernel1'].cuda()
kernel2 = batch['kernel2'].cuda()
sinc_kernel = batch['sinc_kernel'].cuda()
ori_h, ori_w = im_gt.size()[2:4]
# ----------------------- The first degradation process ----------------------- #
# blur
out = filter2D(im_gt, kernel1)
# random resize
updown_type = random.choices(
['up', 'down', 'keep'],
args_degradation['resize_prob'],
)[0]
if updown_type == 'up':
scale = random.uniform(1, args_degradation['resize_range'][1])
elif updown_type == 'down':
scale = random.uniform(args_degradation['resize_range'][0], 1)
else:
scale = 1
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(out, scale_factor=scale, mode=mode)
# add noise
gray_noise_prob = args_degradation['gray_noise_prob']
if random.random() < args_degradation['gaussian_noise_prob']:
out = random_add_gaussian_noise_pt(
out,
sigma_range=args_degradation['noise_range'],
clip=True,
rounds=False,
gray_prob=gray_noise_prob,
)
else:
out = random_add_poisson_noise_pt(
out,
scale_range=args_degradation['poisson_scale_range'],
gray_prob=gray_noise_prob,
clip=True,
rounds=False)
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*args_degradation['jpeg_range'])
out = torch.clamp(out, 0, 1) # clamp to [0, 1], otherwise JPEGer will result in unpleasant artifacts
out = jpeger(out, quality=jpeg_p)
# ----------------------- The second degradation process ----------------------- #
# blur
if random.random() < args_degradation['second_blur_prob']:
out = filter2D(out, kernel2)
# random resize
updown_type = random.choices(
['up', 'down', 'keep'],
args_degradation['resize_prob2'],
)[0]
if updown_type == 'up':
scale = random.uniform(1, args_degradation['resize_range2'][1])
elif updown_type == 'down':
scale = random.uniform(args_degradation['resize_range2'][0], 1)
else:
scale = 1
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(
out,
size=(int(ori_h / sf * scale),
int(ori_w / sf * scale)),
mode=mode,
)
# add noise
gray_noise_prob = args_degradation['gray_noise_prob2']
if random.random() < args_degradation['gaussian_noise_prob2']:
out = random_add_gaussian_noise_pt(
out,
sigma_range=args_degradation['noise_range2'],
clip=True,
rounds=False,
gray_prob=gray_noise_prob,
)
else:
out = random_add_poisson_noise_pt(
out,
scale_range=args_degradation['poisson_scale_range2'],
gray_prob=gray_noise_prob,
clip=True,
rounds=False,
)
# JPEG compression + the final sinc filter
# We also need to resize images to desired sizes. We group [resize back + sinc filter] together
# as one operation.
# We consider two orders:
# 1. [resize back + sinc filter] + JPEG compression
# 2. JPEG compression + [resize back + sinc filter]
# Empirically, we find other combinations (sinc + JPEG + Resize) will introduce twisted lines.
if random.random() < 0.5:
# resize back + the final sinc filter
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(
out,
size=(ori_h // sf,
ori_w // sf),
mode=mode,
)
out = filter2D(out, sinc_kernel)
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*args_degradation['jpeg_range2'])
out = torch.clamp(out, 0, 1)
out = jpeger(out, quality=jpeg_p)
else:
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*args_degradation['jpeg_range2'])
out = torch.clamp(out, 0, 1)
out = jpeger(out, quality=jpeg_p)
# resize back + the final sinc filter
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(
out,
size=(ori_h // sf,
ori_w // sf),
mode=mode,
)
out = filter2D(out, sinc_kernel)
# clamp and round
im_lq = torch.clamp(out, 0, 1.0)
# random crop
gt_size = args_degradation['gt_size']
im_gt, im_lq = paired_random_crop(im_gt, im_lq, gt_size, sf)
lq, gt = im_lq, im_gt
gt = torch.clamp(gt, 0, 1)
lq = torch.clamp(lq, 0, 1)
return lq, gt
root_path = args.save_dir
gt_path = os.path.join(root_path, 'gt')
lr_path = os.path.join(root_path, 'lr')
sr_bicubic_path = os.path.join(root_path, 'sr_bicubic')
os.makedirs(gt_path, exist_ok=True)
os.makedirs(lr_path, exist_ok=True)
os.makedirs(sr_bicubic_path, exist_ok=True)
epochs = args.epoch
step = len(train_dataset) * epochs * args.start_gpu
with torch.no_grad():
for epoch in range(epochs):
for num_batch, batch in enumerate(train_dataloader):
lr_batch, gt_batch = realesrgan_degradation(batch, args_degradation=args_degradation)
sr_bicubic_batch = F.interpolate(lr_batch, size=(gt_batch.size(-2), gt_batch.size(-1)), mode='bicubic',)
for i in range(batch_size):
step += 1
print('process {} images...'.format(step))
lr = lr_batch[i, ...]
gt = gt_batch[i, ...]
sr_bicubic = sr_bicubic_batch[i, ...]
lr_save_path = os.path.join(lr_path,'{}.png'.format(str(step).zfill(7)))
gt_save_path = os.path.join(gt_path, '{}.png'.format(str(step).zfill(7)))
sr_bicubic_save_path = os.path.join(sr_bicubic_path, '{}.png'.format(str(step).zfill(7)))
cv2.imwrite(lr_save_path, 255*lr.detach().cpu().squeeze().permute(1,2,0).numpy()[..., ::-1])
cv2.imwrite(gt_save_path, 255*gt.detach().cpu().squeeze().permute(1,2,0).numpy()[..., ::-1])
cv2.imwrite(sr_bicubic_save_path, 255*sr_bicubic.detach().cpu().squeeze().permute(1,2,0).numpy()[..., ::-1])
del lr_batch, gt_batch, sr_bicubic_batch
torch.cuda.empty_cache()
|