File size: 11,271 Bytes
0ced7d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
'''
 * SeeSR: Towards Semantics-Aware Real-World Image Super-Resolution 
 * Modified from diffusers by Rongyuan Wu
 * 24/12/2023
'''
import os
import sys
sys.path.append(os.getcwd())
import cv2

import torch
import torch.nn.functional as F
from pytorch_lightning import seed_everything

import argparse
from basicsr.data.realesrgan_dataset import RealESRGANDataset
from ram.models import ram
from ram import inference_ram as inference

parser = argparse.ArgumentParser()
parser.add_argument("--gt_path", nargs='+', default=['PATH 1', 'PATH 2'], help='the path of high-resolution images')
parser.add_argument("--save_dir", type=str, default='preset/datasets/train_datasets/training_for_seesr', help='the save path of the training dataset.')
parser.add_argument("--start_gpu", type=int, default=1, help='if you have 5 GPUs, you can set it to 1/2/3/4/5 on five gpus for parallel processing., which will save your time. ')  
parser.add_argument("--batch_size", type=int, default=10, help='smaller batch size means much time but more extensive degradation for making the training dataset.')  
parser.add_argument("--epoch", type=int, default=1, help='decide how many epochs to create for the dataset.')
args = parser.parse_args()

print(f'====== START GPU: {args.start_gpu} =========')
seed_everything(24+args.start_gpu*1000)

from torchvision.transforms import Normalize, Compose
args_training_dataset = {}

# Please set your gt path here. If you have multi dirs, you can set it as ['PATH1', 'PATH2', 'PATH3', ...]
args_training_dataset['gt_path'] = args.gt_path

#################### REALESRGAN SETTING ###########################
args_training_dataset['queue_size'] = 160
args_training_dataset['crop_size'] =  512
args_training_dataset['io_backend'] = {}
args_training_dataset['io_backend']['type'] = 'disk'

args_training_dataset['blur_kernel_size'] = 21
args_training_dataset['kernel_list'] = ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
args_training_dataset['kernel_prob'] = [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
args_training_dataset['sinc_prob'] = 0.1
args_training_dataset['blur_sigma'] = [0.2, 3]
args_training_dataset['betag_range'] = [0.5, 4]
args_training_dataset['betap_range'] = [1, 2]

args_training_dataset['blur_kernel_size2'] = 11
args_training_dataset['kernel_list2'] = ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
args_training_dataset['kernel_prob2'] = [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
args_training_dataset['sinc_prob2'] = 0.1
args_training_dataset['blur_sigma2'] = [0.2, 1.5]
args_training_dataset['betag_range2'] = [0.5, 4.0]
args_training_dataset['betap_range2'] = [1, 2]

args_training_dataset['final_sinc_prob'] = 0.8

args_training_dataset['use_hflip'] = True
args_training_dataset['use_rot'] = False

train_dataset = RealESRGANDataset(args_training_dataset)
batch_size = args.batch_size
train_dataloader = torch.utils.data.DataLoader(
    train_dataset,
    shuffle=False,
    batch_size=batch_size,
    num_workers=11,
    drop_last=True,
)

#################### REALESRGAN SETTING ###########################
args_degradation = {}
# the first degradation process
args_degradation['resize_prob'] = [0.2, 0.7, 0.1]  # up, down, keep
args_degradation['resize_range'] = [0.15, 1.5]
args_degradation['gaussian_noise_prob'] = 0.5
args_degradation['noise_range'] = [1, 30]
args_degradation['poisson_scale_range'] = [0.05, 3.0]
args_degradation['gray_noise_prob'] = 0.4
args_degradation['jpeg_range'] = [30, 95]

# the second degradation process
args_degradation['second_blur_prob'] = 0.8
args_degradation['resize_prob2'] = [0.3, 0.4, 0.3]  # up, down, keep
args_degradation['resize_range2'] = [0.3, 1.2]
args_degradation['gaussian_noise_prob2'] = 0.5
args_degradation['noise_range2'] = [1, 25]
args_degradation['poisson_scale_range2'] = [0.05, 2.5]
args_degradation['gray_noise_prob2'] = 0.4
args_degradation['jpeg_range2'] = [30, 95]

args_degradation['gt_size']= 512
args_degradation['no_degradation_prob']= 0.01


from basicsr.utils import DiffJPEG, USMSharp
from basicsr.utils.img_process_util import filter2D
from basicsr.data.transforms import paired_random_crop, triplet_random_crop
from basicsr.data.degradations import random_add_gaussian_noise_pt, random_add_poisson_noise_pt, random_add_speckle_noise_pt, random_add_saltpepper_noise_pt, bivariate_Gaussian
import random
import torch.nn.functional as F

def realesrgan_degradation(batch,  args_degradation, use_usm=True, sf=4, resize_lq=True):
    jpeger = DiffJPEG(differentiable=False).cuda()
    usm_sharpener = USMSharp().cuda()  # do usm sharpening
    im_gt = batch['gt'].cuda()
    if use_usm:
        im_gt = usm_sharpener(im_gt)
    im_gt = im_gt.to(memory_format=torch.contiguous_format).float()
    kernel1 = batch['kernel1'].cuda()
    kernel2 = batch['kernel2'].cuda()
    sinc_kernel = batch['sinc_kernel'].cuda()

    ori_h, ori_w = im_gt.size()[2:4]

    # ----------------------- The first degradation process ----------------------- #
    # blur
    out = filter2D(im_gt, kernel1)
    # random resize
    updown_type = random.choices(
            ['up', 'down', 'keep'],
            args_degradation['resize_prob'],
            )[0]
    if updown_type == 'up':
        scale = random.uniform(1, args_degradation['resize_range'][1])
    elif updown_type == 'down':
        scale = random.uniform(args_degradation['resize_range'][0], 1)
    else:
        scale = 1
    mode = random.choice(['area', 'bilinear', 'bicubic'])
    out = F.interpolate(out, scale_factor=scale, mode=mode)
    # add noise
    gray_noise_prob = args_degradation['gray_noise_prob']
    if random.random() < args_degradation['gaussian_noise_prob']:
        out = random_add_gaussian_noise_pt(
            out,
            sigma_range=args_degradation['noise_range'],
            clip=True,
            rounds=False,
            gray_prob=gray_noise_prob,
            )
    else:
        out = random_add_poisson_noise_pt(
            out,
            scale_range=args_degradation['poisson_scale_range'],
            gray_prob=gray_noise_prob,
            clip=True,
            rounds=False)
    # JPEG compression
    jpeg_p = out.new_zeros(out.size(0)).uniform_(*args_degradation['jpeg_range'])
    out = torch.clamp(out, 0, 1)  # clamp to [0, 1], otherwise JPEGer will result in unpleasant artifacts
    out = jpeger(out, quality=jpeg_p)

    # ----------------------- The second degradation process ----------------------- #
    # blur
    if random.random() < args_degradation['second_blur_prob']:
        out = filter2D(out, kernel2)
    # random resize
    updown_type = random.choices(
            ['up', 'down', 'keep'],
            args_degradation['resize_prob2'],
            )[0]
    if updown_type == 'up':
        scale = random.uniform(1, args_degradation['resize_range2'][1])
    elif updown_type == 'down':
        scale = random.uniform(args_degradation['resize_range2'][0], 1)
    else:
        scale = 1
    mode = random.choice(['area', 'bilinear', 'bicubic'])
    out = F.interpolate(
            out,
            size=(int(ori_h / sf * scale),
                    int(ori_w / sf * scale)),
            mode=mode,
            )
    # add noise
    gray_noise_prob = args_degradation['gray_noise_prob2']
    if random.random() < args_degradation['gaussian_noise_prob2']:
        out = random_add_gaussian_noise_pt(
            out,
            sigma_range=args_degradation['noise_range2'],
            clip=True,
            rounds=False,
            gray_prob=gray_noise_prob,
            )
    else:
        out = random_add_poisson_noise_pt(
            out,
            scale_range=args_degradation['poisson_scale_range2'],
            gray_prob=gray_noise_prob,
            clip=True,
            rounds=False,
            )

    # JPEG compression + the final sinc filter
    # We also need to resize images to desired sizes. We group [resize back + sinc filter] together
    # as one operation.
    # We consider two orders:
    #   1. [resize back + sinc filter] + JPEG compression
    #   2. JPEG compression + [resize back + sinc filter]
    # Empirically, we find other combinations (sinc + JPEG + Resize) will introduce twisted lines.
    if random.random() < 0.5:
        # resize back + the final sinc filter
        mode = random.choice(['area', 'bilinear', 'bicubic'])
        out = F.interpolate(
                out,
                size=(ori_h // sf,
                        ori_w // sf),
                mode=mode,
                )
        out = filter2D(out, sinc_kernel)
        # JPEG compression
        jpeg_p = out.new_zeros(out.size(0)).uniform_(*args_degradation['jpeg_range2'])
        out = torch.clamp(out, 0, 1)
        out = jpeger(out, quality=jpeg_p)
    else:
        # JPEG compression
        jpeg_p = out.new_zeros(out.size(0)).uniform_(*args_degradation['jpeg_range2'])
        out = torch.clamp(out, 0, 1)
        out = jpeger(out, quality=jpeg_p)
        # resize back + the final sinc filter
        mode = random.choice(['area', 'bilinear', 'bicubic'])
        out = F.interpolate(
                out,
                size=(ori_h // sf,
                        ori_w // sf),
                mode=mode,
                )
        out = filter2D(out, sinc_kernel)

    # clamp and round
    im_lq = torch.clamp(out, 0, 1.0)

    # random crop
    gt_size = args_degradation['gt_size']
    im_gt, im_lq = paired_random_crop(im_gt, im_lq, gt_size, sf)
    lq, gt = im_lq, im_gt


    gt = torch.clamp(gt, 0, 1)
    lq = torch.clamp(lq, 0, 1)

    return lq, gt


root_path = args.save_dir
gt_path = os.path.join(root_path, 'gt')
lr_path = os.path.join(root_path, 'lr')
sr_bicubic_path = os.path.join(root_path, 'sr_bicubic')
os.makedirs(gt_path, exist_ok=True)
os.makedirs(lr_path, exist_ok=True)
os.makedirs(sr_bicubic_path, exist_ok=True)


epochs = args.epoch
step = len(train_dataset) * epochs * args.start_gpu
with torch.no_grad():
    for epoch in range(epochs):
        for num_batch, batch in enumerate(train_dataloader):
            lr_batch, gt_batch = realesrgan_degradation(batch, args_degradation=args_degradation)
            sr_bicubic_batch = F.interpolate(lr_batch, size=(gt_batch.size(-2), gt_batch.size(-1)), mode='bicubic',)

            for i in range(batch_size):
                step += 1
                print('process {} images...'.format(step))
                lr = lr_batch[i, ...]
                gt = gt_batch[i, ...]
                sr_bicubic = sr_bicubic_batch[i, ...]

                lr_save_path =  os.path.join(lr_path,'{}.png'.format(str(step).zfill(7)))
                gt_save_path =  os.path.join(gt_path, '{}.png'.format(str(step).zfill(7)))
                sr_bicubic_save_path =  os.path.join(sr_bicubic_path, '{}.png'.format(str(step).zfill(7)))

                cv2.imwrite(lr_save_path, 255*lr.detach().cpu().squeeze().permute(1,2,0).numpy()[..., ::-1])
                cv2.imwrite(gt_save_path, 255*gt.detach().cpu().squeeze().permute(1,2,0).numpy()[..., ::-1])
                cv2.imwrite(sr_bicubic_save_path, 255*sr_bicubic.detach().cpu().squeeze().permute(1,2,0).numpy()[..., ::-1])
               

            del lr_batch, gt_batch, sr_bicubic_batch
            torch.cuda.empty_cache()