Spaces:
Running
on
Zero
Running
on
Zero
from torch import nn as nn | |
from basicsr.archs.arch_util import ResidualBlockNoBN, default_init_weights | |
from basicsr.utils.registry import ARCH_REGISTRY | |
class DEResNet(nn.Module): | |
"""Degradation Estimator with ResNetNoBN arch. v2.1, no vector anymore | |
As shown in paper 'Towards Flexible Blind JPEG Artifacts Removal', | |
resnet arch works for image quality estimation. | |
Args: | |
num_in_ch (int): channel number of inputs. Default: 3. | |
num_degradation (int): num of degradation the DE should estimate. Default: 2(blur+noise). | |
degradation_embed_size (int): embedding size of each degradation vector. | |
degradation_degree_actv (int): activation function for degradation degree scalar. Default: sigmoid. | |
num_feats (list): channel number of each stage. | |
num_blocks (list): residual block of each stage. | |
downscales (list): downscales of each stage. | |
""" | |
def __init__(self, | |
num_in_ch=3, | |
num_degradation=2, | |
degradation_degree_actv='sigmoid', | |
num_feats=(64, 128, 256, 512), | |
num_blocks=(2, 2, 2, 2), | |
downscales=(2, 2, 2, 1)): | |
super(DEResNet, self).__init__() | |
assert isinstance(num_feats, list) | |
assert isinstance(num_blocks, list) | |
assert isinstance(downscales, list) | |
assert len(num_feats) == len(num_blocks) and len(num_feats) == len(downscales) | |
num_stage = len(num_feats) | |
self.conv_first = nn.ModuleList() | |
for _ in range(num_degradation): | |
self.conv_first.append(nn.Conv2d(num_in_ch, num_feats[0], 3, 1, 1)) | |
self.body = nn.ModuleList() | |
for _ in range(num_degradation): | |
body = list() | |
for stage in range(num_stage): | |
for _ in range(num_blocks[stage]): | |
body.append(ResidualBlockNoBN(num_feats[stage])) | |
if downscales[stage] == 1: | |
if stage < num_stage - 1 and num_feats[stage] != num_feats[stage + 1]: | |
body.append(nn.Conv2d(num_feats[stage], num_feats[stage + 1], 3, 1, 1)) | |
continue | |
elif downscales[stage] == 2: | |
body.append(nn.Conv2d(num_feats[stage], num_feats[min(stage + 1, num_stage - 1)], 3, 2, 1)) | |
else: | |
raise NotImplementedError | |
self.body.append(nn.Sequential(*body)) | |
# self.body = nn.Sequential(*body) | |
self.num_degradation = num_degradation | |
self.fc_degree = nn.ModuleList() | |
if degradation_degree_actv == 'sigmoid': | |
actv = nn.Sigmoid | |
elif degradation_degree_actv == 'tanh': | |
actv = nn.Tanh | |
else: | |
raise NotImplementedError(f'only sigmoid and tanh are supported for degradation_degree_actv, ' | |
f'{degradation_degree_actv} is not supported yet.') | |
for _ in range(num_degradation): | |
self.fc_degree.append( | |
nn.Sequential( | |
nn.Linear(num_feats[-1], 512), | |
nn.ReLU(inplace=True), | |
nn.Linear(512, 1), | |
actv(), | |
)) | |
self.avg_pool = nn.AdaptiveAvgPool2d(1) | |
default_init_weights([self.conv_first, self.body, self.fc_degree], 0.1) | |
def forward(self, x): | |
degrees = [] | |
for i in range(self.num_degradation): | |
x_out = self.conv_first[i](x) | |
feat = self.body[i](x_out) | |
feat = self.avg_pool(feat) | |
feat = feat.squeeze(-1).squeeze(-1) | |
# for i in range(self.num_degradation): | |
degrees.append(self.fc_degree[i](feat).squeeze(-1)) | |
return degrees | |