Spaces:
Running
on
Zero
Running
on
Zero
import cv2 | |
import math | |
import numpy as np | |
import os | |
import os.path as osp | |
import random | |
import time | |
import torch | |
from pathlib import Path | |
from torch.utils import data as data | |
from basicsr.data.degradations import circular_lowpass_kernel, random_mixed_kernels | |
from basicsr.data.transforms import augment | |
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor | |
from basicsr.utils.registry import DATASET_REGISTRY | |
class RealESRGANDataset(data.Dataset): | |
"""Modified dataset based on the dataset used for Real-ESRGAN model: | |
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data. | |
It loads gt (Ground-Truth) images, and augments them. | |
It also generates blur kernels and sinc kernels for generating low-quality images. | |
Note that the low-quality images are processed in tensors on GPUS for faster processing. | |
Args: | |
opt (dict): Config for train datasets. It contains the following keys: | |
dataroot_gt (str): Data root path for gt. | |
meta_info (str): Path for meta information file. | |
io_backend (dict): IO backend type and other kwarg. | |
use_hflip (bool): Use horizontal flips. | |
use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation). | |
Please see more options in the codes. | |
""" | |
def __init__(self, opt): | |
super(RealESRGANDataset, self).__init__() | |
self.opt = opt | |
self.file_client = None | |
self.io_backend_opt = opt['io_backend'] | |
if 'crop_size' in opt: | |
self.crop_size = opt['crop_size'] | |
else: | |
self.crop_size = 512 | |
if 'image_type' not in opt: | |
opt['image_type'] = 'png' | |
# support multiple type of data: file path and meta data, remove support of lmdb | |
self.paths = [] | |
if 'meta_info' in opt: | |
with open(self.opt['meta_info']) as fin: | |
paths = [line.strip().split(' ')[0] for line in fin] | |
self.paths = [v for v in paths] | |
if 'meta_num' in opt: | |
self.paths = sorted(self.paths)[:opt['meta_num']] | |
if 'gt_path' in opt: | |
if isinstance(opt['gt_path'], str): | |
self.paths.extend(sorted([str(x) for x in Path(opt['gt_path']).glob('*.'+opt['image_type'])])) | |
else: | |
self.paths.extend(sorted([str(x) for x in Path(opt['gt_path'][0]).glob('*.'+opt['image_type'])])) | |
if len(opt['gt_path']) > 1: | |
for i in range(len(opt['gt_path'])-1): | |
self.paths.extend(sorted([str(x) for x in Path(opt['gt_path'][i+1]).glob('*.'+opt['image_type'])])) | |
if 'imagenet_path' in opt: | |
class_list = os.listdir(opt['imagenet_path']) | |
for class_file in class_list: | |
self.paths.extend(sorted([str(x) for x in Path(os.path.join(opt['imagenet_path'], class_file)).glob('*.'+'JPEG')])) | |
if 'face_gt_path' in opt: | |
if isinstance(opt['face_gt_path'], str): | |
face_list = sorted([str(x) for x in Path(opt['face_gt_path']).glob('*.'+opt['image_type'])]) | |
self.paths.extend(face_list[:opt['num_face']]) | |
else: | |
face_list = sorted([str(x) for x in Path(opt['face_gt_path'][0]).glob('*.'+opt['image_type'])]) | |
self.paths.extend(face_list[:opt['num_face']]) | |
if len(opt['face_gt_path']) > 1: | |
for i in range(len(opt['face_gt_path'])-1): | |
self.paths.extend(sorted([str(x) for x in Path(opt['face_gt_path'][0]).glob('*.'+opt['image_type'])])[:opt['num_face']]) | |
# limit number of pictures for test | |
if 'num_pic' in opt: | |
if 'val' or 'test' in opt: | |
random.shuffle(self.paths) | |
self.paths = self.paths[:opt['num_pic']] | |
else: | |
self.paths = self.paths[:opt['num_pic']] | |
if 'mul_num' in opt: | |
self.paths = self.paths * opt['mul_num'] | |
# print('>>>>>>>>>>>>>>>>>>>>>') | |
# print(self.paths) | |
# blur settings for the first degradation | |
self.blur_kernel_size = opt['blur_kernel_size'] | |
self.kernel_list = opt['kernel_list'] | |
self.kernel_prob = opt['kernel_prob'] # a list for each kernel probability | |
self.blur_sigma = opt['blur_sigma'] | |
self.betag_range = opt['betag_range'] # betag used in generalized Gaussian blur kernels | |
self.betap_range = opt['betap_range'] # betap used in plateau blur kernels | |
self.sinc_prob = opt['sinc_prob'] # the probability for sinc filters | |
# blur settings for the second degradation | |
self.blur_kernel_size2 = opt['blur_kernel_size2'] | |
self.kernel_list2 = opt['kernel_list2'] | |
self.kernel_prob2 = opt['kernel_prob2'] | |
self.blur_sigma2 = opt['blur_sigma2'] | |
self.betag_range2 = opt['betag_range2'] | |
self.betap_range2 = opt['betap_range2'] | |
self.sinc_prob2 = opt['sinc_prob2'] | |
# a final sinc filter | |
self.final_sinc_prob = opt['final_sinc_prob'] | |
self.kernel_range = [2 * v + 1 for v in range(3, 11)] # kernel size ranges from 7 to 21 | |
# TODO: kernel range is now hard-coded, should be in the configure file | |
self.pulse_tensor = torch.zeros(21, 21).float() # convolving with pulse tensor brings no blurry effect | |
self.pulse_tensor[10, 10] = 1 | |
def __getitem__(self, index): | |
if self.file_client is None: | |
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt) | |
# -------------------------------- Load gt images -------------------------------- # | |
# Shape: (h, w, c); channel order: BGR; image range: [0, 1], float32. | |
gt_path = self.paths[index] | |
# avoid errors caused by high latency in reading files | |
retry = 3 | |
while retry > 0: | |
try: | |
img_bytes = self.file_client.get(gt_path, 'gt') | |
except (IOError, OSError) as e: | |
# logger = get_root_logger() | |
# logger.warn(f'File client error: {e}, remaining retry times: {retry - 1}') | |
# change another file to read | |
index = random.randint(0, self.__len__()-1) | |
gt_path = self.paths[index] | |
time.sleep(1) # sleep 1s for occasional server congestion | |
else: | |
break | |
finally: | |
retry -= 1 | |
img_gt = imfrombytes(img_bytes, float32=True) | |
# filter the dataset and remove images with too low quality | |
img_size = os.path.getsize(gt_path) | |
img_size = img_size/1024 | |
while img_gt.shape[0] * img_gt.shape[1] < 384*384 or img_size<100: | |
index = random.randint(0, self.__len__()-1) | |
gt_path = self.paths[index] | |
time.sleep(0.1) # sleep 1s for occasional server congestion | |
img_bytes = self.file_client.get(gt_path, 'gt') | |
img_gt = imfrombytes(img_bytes, float32=True) | |
img_size = os.path.getsize(gt_path) | |
img_size = img_size/1024 | |
# -------------------- Do augmentation for training: flip, rotation -------------------- # | |
img_gt = augment(img_gt, self.opt['use_hflip'], self.opt['use_rot']) | |
# crop or pad to 400 | |
# TODO: 400 is hard-coded. You may change it accordingly | |
h, w = img_gt.shape[0:2] | |
crop_pad_size = self.crop_size | |
# pad | |
if h < crop_pad_size or w < crop_pad_size: | |
pad_h = max(0, crop_pad_size - h) | |
pad_w = max(0, crop_pad_size - w) | |
img_gt = cv2.copyMakeBorder(img_gt, 0, pad_h, 0, pad_w, cv2.BORDER_REFLECT_101) | |
# crop | |
if img_gt.shape[0] > crop_pad_size or img_gt.shape[1] > crop_pad_size: | |
h, w = img_gt.shape[0:2] | |
# randomly choose top and left coordinates | |
top = random.randint(0, h - crop_pad_size) | |
left = random.randint(0, w - crop_pad_size) | |
# top = (h - crop_pad_size) // 2 -1 | |
# left = (w - crop_pad_size) // 2 -1 | |
img_gt = img_gt[top:top + crop_pad_size, left:left + crop_pad_size, ...] | |
# ------------------------ Generate kernels (used in the first degradation) ------------------------ # | |
kernel_size = random.choice(self.kernel_range) | |
if np.random.uniform() < self.opt['sinc_prob']: | |
# this sinc filter setting is for kernels ranging from [7, 21] | |
if kernel_size < 13: | |
omega_c = np.random.uniform(np.pi / 3, np.pi) | |
else: | |
omega_c = np.random.uniform(np.pi / 5, np.pi) | |
kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False) | |
else: | |
kernel = random_mixed_kernels( | |
self.kernel_list, | |
self.kernel_prob, | |
kernel_size, | |
self.blur_sigma, | |
self.blur_sigma, [-math.pi, math.pi], | |
self.betag_range, | |
self.betap_range, | |
noise_range=None) | |
# pad kernel | |
pad_size = (21 - kernel_size) // 2 | |
kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size))) | |
# ------------------------ Generate kernels (used in the second degradation) ------------------------ # | |
kernel_size = random.choice(self.kernel_range) | |
if np.random.uniform() < self.opt['sinc_prob2']: | |
if kernel_size < 13: | |
omega_c = np.random.uniform(np.pi / 3, np.pi) | |
else: | |
omega_c = np.random.uniform(np.pi / 5, np.pi) | |
kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False) | |
else: | |
kernel2 = random_mixed_kernels( | |
self.kernel_list2, | |
self.kernel_prob2, | |
kernel_size, | |
self.blur_sigma2, | |
self.blur_sigma2, [-math.pi, math.pi], | |
self.betag_range2, | |
self.betap_range2, | |
noise_range=None) | |
# pad kernel | |
pad_size = (21 - kernel_size) // 2 | |
kernel2 = np.pad(kernel2, ((pad_size, pad_size), (pad_size, pad_size))) | |
# ------------------------------------- the final sinc kernel ------------------------------------- # | |
if np.random.uniform() < self.opt['final_sinc_prob']: | |
kernel_size = random.choice(self.kernel_range) | |
omega_c = np.random.uniform(np.pi / 3, np.pi) | |
sinc_kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=21) | |
sinc_kernel = torch.FloatTensor(sinc_kernel) | |
else: | |
sinc_kernel = self.pulse_tensor | |
# BGR to RGB, HWC to CHW, numpy to tensor | |
img_gt = img2tensor([img_gt], bgr2rgb=True, float32=True)[0] | |
kernel = torch.FloatTensor(kernel) | |
kernel2 = torch.FloatTensor(kernel2) | |
return_d = {'gt': img_gt, 'kernel1': kernel, 'kernel2': kernel2, 'sinc_kernel': sinc_kernel, 'gt_path': gt_path} | |
return return_d | |
def __len__(self): | |
return len(self.paths) | |