SuperResolution / test_seesr.py
alexnasa's picture
Upload 6 files
15fa7b9 verified
'''
* SeeSR: Towards Semantics-Aware Real-World Image Super-Resolution
* Modified from diffusers by Rongyuan Wu
* 24/12/2023
'''
import os
import sys
sys.path.append(os.getcwd())
import cv2
import glob
import argparse
import numpy as np
from PIL import Image
import torch
import torch.utils.checkpoint
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import AutoencoderKL, DDPMScheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor
from pipelines.pipeline_seesr import StableDiffusionControlNetPipeline
from utils.misc import load_dreambooth_lora
from utils.wavelet_color_fix import wavelet_color_fix, adain_color_fix
from ram.models.ram_lora import ram
from ram import inference_ram as inference
from ram import get_transform
from typing import Mapping, Any
from torchvision import transforms
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
logger = get_logger(__name__, log_level="INFO")
tensor_transforms = transforms.Compose([
transforms.ToTensor(),
])
ram_transforms = transforms.Compose([
transforms.Resize((384, 384)),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
def load_state_dict_diffbirSwinIR(model: nn.Module, state_dict: Mapping[str, Any], strict: bool=False) -> None:
state_dict = state_dict.get("state_dict", state_dict)
is_model_key_starts_with_module = list(model.state_dict().keys())[0].startswith("module.")
is_state_dict_key_starts_with_module = list(state_dict.keys())[0].startswith("module.")
if (
is_model_key_starts_with_module and
(not is_state_dict_key_starts_with_module)
):
state_dict = {f"module.{key}": value for key, value in state_dict.items()}
if (
(not is_model_key_starts_with_module) and
is_state_dict_key_starts_with_module
):
state_dict = {key[len("module."):]: value for key, value in state_dict.items()}
model.load_state_dict(state_dict, strict=strict)
def load_seesr_pipeline(args, accelerator, enable_xformers_memory_efficient_attention):
from models.controlnet import ControlNetModel
from models.unet_2d_condition import UNet2DConditionModel
# Load scheduler, tokenizer and models.
scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_path, subfolder="scheduler")
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_path, subfolder="text_encoder")
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_path, subfolder="tokenizer")
vae = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="vae")
feature_extractor = CLIPImageProcessor.from_pretrained(f"{args.pretrained_model_path}/feature_extractor")
unet = UNet2DConditionModel.from_pretrained(args.seesr_model_path, subfolder="unet")
controlnet = ControlNetModel.from_pretrained(args.seesr_model_path, subfolder="controlnet")
# Freeze vae and text_encoder
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
unet.requires_grad_(False)
controlnet.requires_grad_(False)
if enable_xformers_memory_efficient_attention:
if is_xformers_available():
unet.enable_xformers_memory_efficient_attention()
controlnet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
# Get the validation pipeline
validation_pipeline = StableDiffusionControlNetPipeline(
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, feature_extractor=feature_extractor,
unet=unet, controlnet=controlnet, scheduler=scheduler, safety_checker=None, requires_safety_checker=False,
)
validation_pipeline._init_tiled_vae(encoder_tile_size=args.vae_encoder_tiled_size, decoder_tile_size=args.vae_decoder_tiled_size)
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move text_encode and vae to gpu and cast to weight_dtype
text_encoder.to(accelerator.device, dtype=weight_dtype)
vae.to(accelerator.device, dtype=weight_dtype)
unet.to(accelerator.device, dtype=weight_dtype)
controlnet.to(accelerator.device, dtype=weight_dtype)
return validation_pipeline
def load_tag_model(args, device='cuda'):
model = ram(pretrained='preset/models/ram_swin_large_14m.pth',
pretrained_condition=args.ram_ft_path,
image_size=384,
vit='swin_l')
model.eval()
model.to(device)
return model
def get_validation_prompt(args, image, model, device='cuda'):
validation_prompt = ""
lq = tensor_transforms(image).unsqueeze(0).to(device)
lq = ram_transforms(lq)
res = inference(lq, model)
ram_encoder_hidden_states = model.generate_image_embeds(lq)
validation_prompt = f"{res[0]}, {args.prompt},"
return validation_prompt, ram_encoder_hidden_states
def main(args, enable_xformers_memory_efficient_attention=True,):
txt_path = os.path.join(args.output_dir, 'txt')
os.makedirs(txt_path, exist_ok=True)
accelerator = Accelerator(
mixed_precision=args.mixed_precision,
)
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the output folder creation
if accelerator.is_main_process:
os.makedirs(args.output_dir, exist_ok=True)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("SeeSR")
pipeline = load_seesr_pipeline(args, accelerator, enable_xformers_memory_efficient_attention)
model = load_tag_model(args, accelerator.device)
if accelerator.is_main_process:
generator = torch.Generator(device=accelerator.device)
if args.seed is not None:
generator.manual_seed(args.seed)
if os.path.isdir(args.image_path):
image_names = sorted(glob.glob(f'{args.image_path}/*.*'))
else:
image_names = [args.image_path]
for image_idx, image_name in enumerate(image_names[:]):
print(f'================== process {image_idx} imgs... ===================')
validation_image = Image.open(image_name).convert("RGB")
validation_prompt, ram_encoder_hidden_states = get_validation_prompt(args, validation_image, model)
validation_prompt += args.added_prompt # clean, extremely detailed, best quality, sharp, clean
negative_prompt = args.negative_prompt #dirty, messy, low quality, frames, deformed,
if args.save_prompts:
txt_save_path = f"{txt_path}/{os.path.basename(image_name).split('.')[0]}.txt"
file = open(txt_save_path, "w")
file.write(validation_prompt)
file.close()
print(f'{validation_prompt}')
ori_width, ori_height = validation_image.size
resize_flag = False
rscale = args.upscale
if ori_width < args.process_size//rscale or ori_height < args.process_size//rscale:
scale = (args.process_size//rscale)/min(ori_width, ori_height)
tmp_image = validation_image.resize((int(scale*ori_width), int(scale*ori_height)))
validation_image = tmp_image
resize_flag = True
validation_image = validation_image.resize((validation_image.size[0]*rscale, validation_image.size[1]*rscale))
validation_image = validation_image.resize((validation_image.size[0]//8*8, validation_image.size[1]//8*8))
width, height = validation_image.size
resize_flag = True #
print(f'input size: {height}x{width}')
for sample_idx in range(args.sample_times):
os.makedirs(f'{args.output_dir}/sample{str(sample_idx).zfill(2)}/', exist_ok=True)
for sample_idx in range(args.sample_times):
with torch.autocast("cuda"):
image = pipeline(
validation_prompt, validation_image, num_inference_steps=args.num_inference_steps, generator=generator, height=height, width=width,
guidance_scale=args.guidance_scale, negative_prompt=negative_prompt, conditioning_scale=args.conditioning_scale,
start_point=args.start_point, ram_encoder_hidden_states=ram_encoder_hidden_states,
latent_tiled_size=args.latent_tiled_size, latent_tiled_overlap=args.latent_tiled_overlap,
args=args,
).images[0]
if args.align_method == 'nofix':
image = image
else:
if args.align_method == 'wavelet':
image = wavelet_color_fix(image, validation_image)
elif args.align_method == 'adain':
image = adain_color_fix(image, validation_image)
if resize_flag:
image = image.resize((ori_width*rscale, ori_height*rscale))
name, ext = os.path.splitext(os.path.basename(image_name))
image.save(f'{args.output_dir}/sample{str(sample_idx).zfill(2)}/{name}.png')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--seesr_model_path", type=str, default=None)
parser.add_argument("--ram_ft_path", type=str, default=None)
parser.add_argument("--pretrained_model_path", type=str, default=None)
parser.add_argument("--prompt", type=str, default="") # user can add self-prompt to improve the results
parser.add_argument("--added_prompt", type=str, default="clean, high-resolution, 8k")
parser.add_argument("--negative_prompt", type=str, default="dotted, noise, blur, lowres, smooth")
parser.add_argument("--image_path", type=str, default=None)
parser.add_argument("--output_dir", type=str, default=None)
parser.add_argument("--mixed_precision", type=str, default="fp16") # no/fp16/bf16
parser.add_argument("--guidance_scale", type=float, default=5.5)
parser.add_argument("--conditioning_scale", type=float, default=1.0)
parser.add_argument("--blending_alpha", type=float, default=1.0)
parser.add_argument("--num_inference_steps", type=int, default=50)
parser.add_argument("--process_size", type=int, default=512)
parser.add_argument("--vae_decoder_tiled_size", type=int, default=224) # latent size, for 24G
parser.add_argument("--vae_encoder_tiled_size", type=int, default=1024) # image size, for 13G
parser.add_argument("--latent_tiled_size", type=int, default=96)
parser.add_argument("--latent_tiled_overlap", type=int, default=32)
parser.add_argument("--upscale", type=int, default=4)
parser.add_argument("--seed", type=int, default=None)
parser.add_argument("--sample_times", type=int, default=1)
parser.add_argument("--align_method", type=str, choices=['wavelet', 'adain', 'nofix'], default='adain')
parser.add_argument("--start_steps", type=int, default=999) # defaults set to 999.
parser.add_argument("--start_point", type=str, choices=['lr', 'noise'], default='lr') # LR Embedding Strategy, choose 'lr latent + 999 steps noise' as diffusion start point.
parser.add_argument("--save_prompts", action='store_true')
args = parser.parse_args()
main(args)