# single gpu CUDA_VISIBLE_DEVICES="0," accelerate launch train_seesr.py \ --pretrained_model_name_or_path="preset/models/stable-diffusion-2-base" \ --output_dir="./experience/seesr" \ --root_folders 'preset/datasets/training_datasets' \ --ram_ft_path 'preset/models/DAPE.pth' \ --enable_xformers_memory_efficient_attention \ --mixed_precision="fp16" \ --resolution=512 \ --learning_rate=5e-5 \ --train_batch_size=16 \ --gradient_accumulation_steps=2 \ --null_text_ratio=0.5 --dataloader_num_workers=0 \ --checkpointing_steps=10000 # multi-gpus CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7," accelerate launch train_seesr.py \ --pretrained_model_name_or_path="preset/models/stable-diffusion-2-base" \ --output_dir="./experience/seesr" \ --root_folders 'preset/datasets/training_datasets' \ --ram_ft_path 'preset/models/DAPE.pth' \ --enable_xformers_memory_efficient_attention \ --mixed_precision="fp16" \ --resolution=512 \ --learning_rate=5e-5 \ --train_batch_size=2 \ --gradient_accumulation_steps=2 \ --null_text_ratio=0.5 --dataloader_num_workers=0 \ --checkpointing_steps=10000