from sentence_transformers import SentenceTransformer, CrossEncoder, util import torch import pickle import pandas as pd import gradio as gr bi_encoder = SentenceTransformer("multi-qa-MiniLM-L6-cos-v1") cross_encoder = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2") corpus_embeddings=pd.read_pickle("corpus_embeddings_cpu.pkl") corpus=pd.read_pickle("corpus.pkl") def search(query,top_k=100): print("Top 5 Answer by the NSE:") print() ans=[] ##### Sematic Search ##### # Encode the query using the bi-encoder and find potentially relevant passages question_embedding = bi_encoder.encode(query, convert_to_tensor=True) hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k) hits = hits[0] # Get the hits for the first query ##### Re-Ranking ##### # Now, score all retrieved passages with the cross_encoder cross_inp = [[query, corpus[hit['corpus_id']]] for hit in hits] cross_scores = cross_encoder.predict(cross_inp) # Sort results by the cross-encoder scores for idx in range(len(cross_scores)): hits[idx]['cross-score'] = cross_scores[idx] hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True) for idx, hit in enumerate(hits[0:5]): ans.append(corpus[hit['corpus_id']]) return ans[0],ans[1],ans[2],ans[3],ans[4] iface = gr.Interface(fn=search, inputs=["text"], outputs=["textbox","textbox","textbox","textbox","textbox"], examples=[ [2, "cat", "park", ["ran", "swam"], True], [4, "dog", "zoo", ["ate", "swam"], False], [10, "bird", "road", ["ran"], False], [8, "cat", "zoo", ["ate"], True], ],).launch(share=True)