natolambert commited on
Commit
88c98d4
·
1 Parent(s): 6a914d5

sorry this git history is v messy

Browse files
.gitignore CHANGED
@@ -11,3 +11,5 @@ eval-results/
11
  eval-queue-bk/
12
  eval-results-bk/
13
  logs/
 
 
 
11
  eval-queue-bk/
12
  eval-results-bk/
13
  logs/
14
+ .gradio/
15
+ .evals/
README.md CHANGED
@@ -1,13 +1,15 @@
1
  ---
2
- title: Reward Bench V2
3
- emoji: 🥇
4
- colorFrom: green
5
- colorTo: indigo
6
  sdk: gradio
 
7
  app_file: app.py
8
  pinned: true
9
  license: apache-2.0
10
- short_description: Internal leaderboard for reward bench v2 (WIP)
 
11
  ---
12
 
13
  # Start the configuration
 
1
  ---
2
+ title: Reward Bench Leaderboard
3
+ emoji: 📐
4
+ colorFrom: pink
5
+ colorTo: blue
6
  sdk: gradio
7
+ sdk_version: 5.30.0
8
  app_file: app.py
9
  pinned: true
10
  license: apache-2.0
11
+ tags:
12
+ - leaderboard
13
  ---
14
 
15
  # Start the configuration
app.py CHANGED
@@ -1,14 +1,15 @@
1
- import gradio as gr
2
  import os
3
- from huggingface_hub import HfApi, snapshot_download
4
- from apscheduler.schedulers.background import BackgroundScheduler
 
 
5
  from datasets import load_dataset
6
- from src.utils import load_all_data
7
- from src.md import ABOUT_TEXT, TOP_TEXT
8
- from src.plt import plot_avg_correlation
9
- from src.constants import subset_mapping, length_categories, example_counts
10
  from src.css import custom_css
11
- import numpy as np
 
12
 
13
  api = HfApi()
14
 
@@ -18,40 +19,44 @@ evals_repo = "allenai/reward-bench-v2-results"
18
  eval_set_repo = "allenai/reward-bench-v2-v0"
19
  repo_dir_rewardbench = "./evals/rewardbench/"
20
 
 
21
  def restart_space():
22
  api.restart_space(repo_id="allenai/reward-bench-v2", token=COLLAB_TOKEN)
23
 
 
24
  print("Pulling evaluation results")
25
  repo = snapshot_download(
26
  local_dir=repo_dir_rewardbench,
27
  ignore_patterns=["pref-sets-scores/*", "eval-set-scores/*"],
28
  repo_id=evals_repo,
29
  use_auth_token=COLLAB_TOKEN,
30
- tqdm_class=None,
31
  etag_timeout=30,
32
  repo_type="dataset",
33
  )
34
 
 
35
  def avg_over_rewardbench_v2(dataframe_core):
36
- domain_cols = ['chat', 'factuality', 'safety', 'math', 'precise if', 'ties']
37
- domain_weights=[0,1,1,1,1,1]
38
  new_df = dataframe_core.copy()
39
 
40
  # for main subsets, keys in subset_mapping, take the weighted avg by example_counts and store for the models
41
  # Get the domain data and handle missing values
42
  domain_data = new_df[domain_cols].values
43
  masked_data = np.ma.masked_array(domain_data, np.isnan(domain_data))
44
-
45
  # Calculate weighted average
46
  average = np.ma.average(masked_data, axis=1, weights=domain_weights)
47
  new_df["average"] = average.filled(np.nan)
48
-
49
  # Rearrange columns for consistent output
50
  keep_columns = ["model", "model_type", "average"] + domain_cols
51
  new_df = new_df[keep_columns]
52
-
53
  return new_df
54
 
 
55
  def avg_over_rewardbench(dataframe_core, dataframe_prefs):
56
  """
57
  Averages over the subsets alpacaeval, mt-bench, llmbar, refusals, hep and returns dataframe with only these columns.
@@ -69,13 +74,19 @@ def avg_over_rewardbench(dataframe_core, dataframe_prefs):
69
  # for main subsets, keys in subset_mapping, take the weighted avg by example_counts and store for the models
70
  for subset, sub_subsets in subset_mapping.items():
71
  subset_cols = [col for col in new_df.columns if col in sub_subsets]
72
- sub_data = new_df[subset_cols].values # take the relevant column values
73
- sub_counts = [example_counts[s] for s in subset_cols] # take the example counts
74
- new_df[subset] = np.average(sub_data, axis=1, weights=sub_counts) # take the weighted average
75
  # new_df[subset] = np.round(np.nanmean(new_df[subset_cols].values, axis=1), 2)
76
 
77
  data_cols = list(subset_mapping.keys())
78
- keep_columns = ["model",] + ["model_type"] + data_cols
 
 
 
 
 
 
79
  # keep_columns = ["model", "average"] + subsets
80
  new_df = new_df[keep_columns]
81
 
@@ -97,7 +108,7 @@ def avg_over_rewardbench(dataframe_core, dataframe_prefs):
97
  # new_df.at[i, "Prior Sets (0.5 weight)"] = dataframe_prefs[dataframe_prefs["model"] == model]["Prior Sets (0.5 weight)"].values[0]
98
  else:
99
  values.append(np.nan)
100
-
101
  new_df["Prior Sets (0.5 weight)"] = values
102
 
103
  # add total average
@@ -114,6 +125,7 @@ def avg_over_rewardbench(dataframe_core, dataframe_prefs):
114
  new_df = new_df[keep_columns]
115
  return new_df
116
 
 
117
  def expand_subsets(dataframe):
118
  # TODO need to modify data/ script to do this
119
  pass
@@ -125,7 +137,7 @@ def length_bias_check(dataframe):
125
  Then, take the average of the three buckets as "average"
126
  """
127
  new_df = dataframe.copy()
128
- existing_subsets = new_df.columns[3:] # model, model_type, average
129
  final_subsets = ["Length Bias", "Neutral", "Terse Bias"]
130
  # new data is empty list dict for each final subset
131
  new_data = {s: [] for s in final_subsets}
@@ -154,17 +166,17 @@ def length_bias_check(dataframe):
154
  return new_df
155
 
156
 
157
-
158
- rewardbench_data = load_all_data(repo_dir_rewardbench, subdir="eval-set").sort_values(by='average', ascending=False)
159
  # rewardbench_data_length = length_bias_check(rewardbench_data).sort_values(by='Terse Bias', ascending=False)
160
  # prefs_data = load_all_data(repo_dir_rewardbench, subdir="pref-sets").sort_values(by='average', ascending=False)
161
  # prefs_data_sub = expand_subsets(prefs_data).sort_values(by='average', ascending=False)
162
 
163
- rewardbench_data_avg = avg_over_rewardbench_v2(rewardbench_data).sort_values(by='average', ascending=False)
 
164
 
165
  def prep_df(df):
166
  # add column to 0th entry with count (column name itself empty)
167
- df.insert(0, '', range(1, 1 + len(df)))
168
 
169
  # replace "model" with "Model" and "model_type" with "Model Type" and "average" with "Average"
170
  df = df.rename(columns={"model": "Model", "model_type": "Model Type", "average": "Average"})
@@ -173,33 +185,36 @@ def prep_df(df):
173
  if "Model Type" in df.columns:
174
  # get model_types that have generative in them
175
  mask = df["Model Type"].str.contains("generative", case=False, na=False)
176
-
177
  # set these values to "Generative"
178
  df.loc[mask, "Model Type"] = "Generative"
179
 
180
  return df
181
 
 
182
  # add count column to all dataframes
183
  rewardbench_data = prep_df(rewardbench_data)
184
  rewardbench_data_avg = prep_df(rewardbench_data_avg).rename(columns={"Average": "Score"})
185
  # adjust weight of this average to 50% for Prior Sets (0.5 weight), 1 for others
186
 
187
  # rewardbench_data_length = prep_df(rewardbench_data_length)
188
- #prefs_data = prep_df(prefs_data)
189
 
190
  col_types_rewardbench = ["number"] + ["markdown"] + ["str"] + ["number"] * (len(rewardbench_data.columns) - 1)
191
- col_types_rewardbench_avg = ["number"] + ["markdown"]+ ["str"] + ["number"] * (len(rewardbench_data_avg.columns) - 1)
192
- #cols_rewardbench_data_length = ["markdown"] + ["number"] * (len(rewardbench_data_length.columns) - 1)
193
- #col_types_prefs = ["number"] + ["markdown"] + ["number"] * (len(prefs_data.columns) - 1)
194
  ## col_types_prefs_sub = ["markdown"] + ["number"] * (len(prefs_data_sub.columns) - 1)
195
 
196
  # for showing random samples
197
  eval_set = load_dataset(eval_set_repo, use_auth_token=COLLAB_TOKEN, split="test")
 
 
198
  def random_sample(r: gr.Request, subset):
199
  if subset is None or subset == []:
200
  sample_index = np.random.randint(0, len(eval_set) - 1)
201
  sample = eval_set[sample_index]
202
- else: # filter by subsets (can be list)
203
  if isinstance(subset, str):
204
  subset = [subset]
205
  # filter down dataset to only include the subset(s)
@@ -207,9 +222,10 @@ def random_sample(r: gr.Request, subset):
207
  sample_index = np.random.randint(0, len(eval_set_filtered) - 1)
208
  sample = eval_set_filtered[sample_index]
209
 
210
- markdown_text = '\n\n'.join([f"**{key}**:\n\n{value}" for key, value in sample.items()])
211
  return markdown_text
212
 
 
213
  subsets = eval_set.unique("subset")
214
 
215
  color_map = {
@@ -218,6 +234,8 @@ color_map = {
218
  "Seq. Classifier": "#ffcd75",
219
  "DPO": "#75809c",
220
  }
 
 
221
  def color_model_type_column(df, color_map):
222
  """
223
  Apply color to the 'Model Type' column of the DataFrame based on a given color mapping.
@@ -229,17 +247,19 @@ def color_model_type_column(df, color_map):
229
  Returns:
230
  pd.Styler: The styled DataFrame.
231
  """
 
232
  # Function to apply color based on the model type
233
  def apply_color(val):
234
  color = color_map.get(val, "default") # Default color if not specified in color_map
235
- return f'background-color: {color}'
236
-
237
  # Format for different columns
238
- format_dict = {col: "{:.1f}" for col in df.columns if col not in ['Average', 'Model', 'Model Type']}
239
- format_dict['Average'] = "{:.2f}"
240
- format_dict[''] = "{:d}"
 
 
241
 
242
- return df.style.applymap(apply_color, subset=['Model Type']).format(format_dict, na_rep='')
243
 
244
  def regex_table(dataframe, regex, filter_button, style=True):
245
  """
@@ -248,18 +268,18 @@ def regex_table(dataframe, regex, filter_button, style=True):
248
  # Split regex statement by comma and trim whitespace around regexes
249
  regex_list = [x.strip() for x in regex.split(",")]
250
  # Join the list into a single regex pattern with '|' acting as OR
251
- combined_regex = '|'.join(regex_list)
252
 
253
  # remove internal ai2 data
254
  dataframe = dataframe[~dataframe["Model"].str.contains("ai2", case=False, na=False)]
255
-
256
  # if filter_button, remove all rows with "ai2" in the model name
257
  update_scores = False
258
  if isinstance(filter_button, list) or isinstance(filter_button, str):
259
- if "Prior Sets" not in filter_button and 'Prior Sets (0.5 weight)' in dataframe.columns:
260
  update_scores = True
261
  # remove the column "Prior Sets (0.5 weight)" from the outputted table
262
- dataframe = dataframe.drop(columns=['Prior Sets (0.5 weight)'])
263
  if "Seq. Classifiers" not in filter_button:
264
  dataframe = dataframe[~dataframe["Model Type"].str.contains("Seq. Classifier", case=False, na=False)]
265
  if "DPO" not in filter_button:
@@ -277,12 +297,12 @@ def regex_table(dataframe, regex, filter_button, style=True):
277
  # if "Prior Sets (0.5 weight)" in data.columns:
278
  # data["Prior Sets (0.5 weight)"] = np.nan
279
  # sort array by Score column
280
- data = data.sort_values(by='Score', ascending=False)
281
 
282
  data.reset_index(drop=True, inplace=True)
283
 
284
  # replace column '' with count/rank
285
- data[''] = np.arange(1, 1 + len(data))
286
 
287
  # if Score exists, round to 2 decimals
288
  if "Score" in data.columns:
@@ -293,7 +313,7 @@ def regex_table(dataframe, regex, filter_button, style=True):
293
  for col in data.columns:
294
  if col not in ["", "Model", "Model Type", "Score", "Average"]:
295
  # replace any data[col].values == '' with np.nan
296
- data[col] = data[col].replace('', np.nan)
297
  data[col] = np.round(np.array(data[col].values).astype(float), 1)
298
  if style:
299
  # apply color
@@ -301,156 +321,145 @@ def regex_table(dataframe, regex, filter_button, style=True):
301
 
302
  return data
303
 
 
304
  # import ipdb; ipdb.set_trace()
305
 
306
- total_models = len(regex_table(rewardbench_data_avg.copy(), "", ["Seq. Classifiers", "DPO", "Custom Classifiers", "Generative"], style=False).values)
 
 
 
 
 
 
 
 
307
 
308
- with gr.Blocks(css=custom_css) as app:
309
  # create tabs for the app, moving the current table to one titled "rewardbench" and the benchmark_text to a tab called "About"
310
  with gr.Row():
311
  with gr.Column(scale=6):
312
- gr.Markdown(TOP_TEXT.format(str(total_models)))
313
- with gr.Column(scale=4):
314
- # search = gr.Textbox(label="Model Search (delimit with , )", placeholder="Regex search for a model")
315
- # filter_button = gr.Checkbox(label="Include AI2 training runs (or type ai2 above).", interactive=True)
316
- # img = gr.Image(value="https://private-user-images.githubusercontent.com/10695622/310698241-24ed272a-0844-451f-b414-fde57478703e.png", width=500)
317
- gr.Markdown("""
318
- ![](file/src/logo.png)
319
- """)
320
- with gr.Tabs(elem_classes="tab-buttons") as tabs:
321
- with gr.TabItem("🏆 RewardBench Leaderboard"):
322
- with gr.Row():
323
- search_1 = gr.Textbox(label="Model Search (delimit with , )",
324
- placeholder="Model Search (delimit with , )",
325
- show_label=False)
326
- model_types_1 = gr.CheckboxGroup(["Seq. Classifiers", "DPO", "Custom Classifiers", "Generative", "Prior Sets"],
327
- value=["Seq. Classifiers", "DPO", "Custom Classifiers", "Generative"],
328
- label="Model Types",
329
- show_label=False,
330
- # info="Which model types to include.",
331
- )
332
- with gr.Row():
333
- # reference data
334
- rewardbench_table_hidden = gr.Dataframe(
335
- rewardbench_data_avg.values,
336
- datatype=col_types_rewardbench_avg,
337
- headers=rewardbench_data_avg.columns.tolist(),
338
- visible=False,
339
- )
340
- rewardbench_table = gr.Dataframe(
341
- regex_table(rewardbench_data_avg.copy(), "", ["Seq. Classifiers", "DPO", "Custom Classifiers", "Generative"]),
342
- datatype=col_types_rewardbench_avg,
343
- headers=rewardbench_data_avg.columns.tolist(),
344
- elem_id="rewardbench_dataframe_avg",
345
- # height=1000,
346
- )
347
-
348
- with gr.TabItem("🔍 RewardBench - Detailed"):
349
  with gr.Row():
350
- search_2 = gr.Textbox(label="Model Search (delimit with , )", show_label=False, placeholder="Model Search (delimit with , )")
351
- model_types_2 = gr.CheckboxGroup(["Seq. Classifiers", "DPO", "Custom Classifiers", "Generative"],
352
- value=["Seq. Classifiers", "DPO", "Generative", "Custom Classifiers"],
353
- label="Model Types",
354
- show_label=False,
355
- # info="Which model types to include."
356
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
357
  with gr.Row():
358
- # ref data
359
- rewardbench_table_detailed_hidden = gr.Dataframe(
360
- rewardbench_data.values,
361
- datatype=col_types_rewardbench,
362
- headers=rewardbench_data.columns.tolist(),
363
- visible=False,
364
- )
365
- rewardbench_table_detailed = gr.Dataframe(
366
- regex_table(rewardbench_data.copy(), "", ["Seq. Classifiers", "DPO", "Generative", "Custom Classifiers"]),
367
- datatype=col_types_rewardbench,
368
- headers=rewardbench_data.columns.tolist(),
369
- elem_id="rewardbench_dataframe",
370
- # height=1000,
371
- )
372
- # with gr.TabItem("rewardbench Eval Set - Length Bias"):
373
- # with gr.Row():
374
- # # backup
375
- # rewardbench_table_len_hidden = gr.Dataframe(
376
- # rewardbench_data_length.values,
377
- # datatype=cols_rewardbench_data_length,
378
- # headers=rewardbench_data_length.columns.tolist(),
379
- # visible=False,
380
- # )
381
- # rewardbench_table_len = gr.Dataframe(
382
- # regex_table(rewardbench_data_length.copy(), "", False).values,
383
- # datatype=cols_rewardbench_data_length,
384
- # headers=rewardbench_data_length.columns.tolist(),
385
- # elem_id="rewardbench_dataframe_length",
386
- # height=1000,
387
- # )
388
- # with gr.TabItem("Prior Test Sets"):
389
- # with gr.Row():
390
- # search_3 = gr.Textbox(label="Model Search (delimit with , )", show_label=False, placeholder="Model Search (delimit with , )")
391
- # model_types_3 = gr.CheckboxGroup(["Seq. Classifiers", "DPO", "Custom Classifiers", "Generative"],
392
- # value=["Seq. Classifiers", "DPO", "Custom Classifiers"],
393
- # label="Model Types",
394
- # show_label=False,
395
- # # info="Which model types to include.",
396
- # )
397
- # with gr.Row():
398
- # PREF_SET_TEXT = """
399
- # For more information, see the [dataset](https://huggingface.co/datasets/allenai/pref-test-sets). Only the subsets Anthropic Helpful, Anthropic HHH, Stanford SHP, and OpenAI's Summarize data are used in the leaderboard ranking.
400
- # """
401
- # gr.Markdown(PREF_SET_TEXT)
402
- # with gr.Row():
403
- # # backup
404
- # pref_sets_table_hidden = gr.Dataframe(
405
- # prefs_data.values,
406
- # datatype=col_types_prefs,
407
- # headers=prefs_data.columns.tolist(),
408
- # visible=False,
409
- # )
410
- # pref_sets_table = gr.Dataframe(
411
- # regex_table(prefs_data.copy(), "", ["Seq. Classifiers", "DPO", "Custom Classifiers"]),
412
- # datatype=col_types_prefs,
413
- # headers=prefs_data.columns.tolist(),
414
- # elem_id="prefs_dataframe",
415
- # # height=1000,
416
- # )
417
-
418
-
419
- with gr.TabItem("About"):
420
- with gr.Row():
421
- gr.Markdown(ABOUT_TEXT)
422
-
423
- with gr.TabItem("Dataset Viewer"):
424
- with gr.Row():
425
- # loads one sample
426
- gr.Markdown("""## Random Dataset Sample Viewer
427
- Warning, refusals, XSTest, and donotanswer datasets have sensitive content.""")
428
- subset_selector = gr.Dropdown(subsets, label="Subset", value=None, multiselect=True)
429
- button = gr.Button("Show Random Sample")
430
-
431
- with gr.Row():
432
- sample_display = gr.Markdown("{sampled data loads here}")
433
-
434
- button.click(fn=random_sample, inputs=[subset_selector], outputs=[sample_display])
435
- # removed plot because not pretty enough
436
- # with gr.TabItem("Model Correlation"):
437
- # with gr.Row():
438
- # plot = plot_avg_correlation(rewardbench_data_avg, prefs_data)
439
- # gr.Plot(plot)
440
 
441
  search_1.change(regex_table, inputs=[rewardbench_table_hidden, search_1, model_types_1], outputs=rewardbench_table)
442
- search_2.change(regex_table, inputs=[rewardbench_table_detailed_hidden, search_2, model_types_2], outputs=rewardbench_table_detailed)
443
- # search.change(regex_table, inputs=[rewardbench_table_len_hidden, search, filter_button], outputs=rewardbench_table_len)
444
- # search_3.change(regex_table, inputs=[pref_sets_table_hidden, search_3, model_types_3], outputs=pref_sets_table)
445
-
446
- model_types_1.change(regex_table, inputs=[rewardbench_table_hidden, search_1, model_types_1], outputs=rewardbench_table)
447
- model_types_2.change(regex_table, inputs=[rewardbench_table_detailed_hidden, search_2, model_types_2], outputs=rewardbench_table_detailed)
448
- # model_types_3.change(regex_table, inputs=[pref_sets_table_hidden, search_3, model_types_3], outputs=pref_sets_table)
449
 
450
  with gr.Row():
451
  with gr.Accordion("📚 Citation", open=False):
452
  citation_button = gr.Textbox(
453
- value=r"""@misc{RewardBench,
 
 
 
 
 
 
 
454
  title={RewardBench: Evaluating Reward Models for Language Modeling},
455
  author={Lambert, Nathan and Pyatkin, Valentina and Morrison, Jacob and Miranda, LJ and Lin, Bill Yuchen and Chandu, Khyathi and Dziri, Nouha and Kumar, Sachin and Zick, Tom and Choi, Yejin and Smith, Noah A. and Hajishirzi, Hannaneh},
456
  year={2024},
@@ -461,18 +470,5 @@ Warning, refusals, XSTest, and donotanswer datasets have sensitive content.""")
461
  elem_id="citation-button",
462
  show_copy_button=True,
463
  )
464
- # Load data when app starts, TODO make this used somewhere...
465
- # def load_data_on_start():
466
- # data_rewardbench = load_all_data(repo_dir_rewardbench)
467
- # rewardbench_table.update(data_rewardbench)
468
-
469
- # data_rewardbench_avg = avg_over_rewardbench(repo_dir_rewardbench)
470
- # rewardbench_table.update(data_rewardbench_avg)
471
-
472
- # data_prefs = load_all_data(repo_dir_prefs)
473
- # pref_sets_table.update(data_prefs)
474
 
475
- scheduler = BackgroundScheduler()
476
- scheduler.add_job(restart_space, "interval", seconds=10800) # restarted every 3h
477
- scheduler.start()
478
- app.launch(allowed_paths=['src/']) # had .queue() before launch before... not sure if that's necessary
 
 
1
  import os
2
+ from pathlib import Path
3
+
4
+ import gradio as gr
5
+ import numpy as np
6
  from datasets import load_dataset
7
+ from huggingface_hub import HfApi, snapshot_download
8
+
9
+ from src.constants import example_counts, length_categories, subset_mapping
 
10
  from src.css import custom_css
11
+ from src.md import *
12
+ from src.utils import load_all_data
13
 
14
  api = HfApi()
15
 
 
19
  eval_set_repo = "allenai/reward-bench-v2-v0"
20
  repo_dir_rewardbench = "./evals/rewardbench/"
21
 
22
+
23
  def restart_space():
24
  api.restart_space(repo_id="allenai/reward-bench-v2", token=COLLAB_TOKEN)
25
 
26
+
27
  print("Pulling evaluation results")
28
  repo = snapshot_download(
29
  local_dir=repo_dir_rewardbench,
30
  ignore_patterns=["pref-sets-scores/*", "eval-set-scores/*"],
31
  repo_id=evals_repo,
32
  use_auth_token=COLLAB_TOKEN,
33
+ tqdm_class=None,
34
  etag_timeout=30,
35
  repo_type="dataset",
36
  )
37
 
38
+
39
  def avg_over_rewardbench_v2(dataframe_core):
40
+ domain_cols = ["chat", "factuality", "safety", "math", "precise if", "ties"]
41
+ domain_weights = [0, 1, 1, 1, 1, 1]
42
  new_df = dataframe_core.copy()
43
 
44
  # for main subsets, keys in subset_mapping, take the weighted avg by example_counts and store for the models
45
  # Get the domain data and handle missing values
46
  domain_data = new_df[domain_cols].values
47
  masked_data = np.ma.masked_array(domain_data, np.isnan(domain_data))
48
+
49
  # Calculate weighted average
50
  average = np.ma.average(masked_data, axis=1, weights=domain_weights)
51
  new_df["average"] = average.filled(np.nan)
52
+
53
  # Rearrange columns for consistent output
54
  keep_columns = ["model", "model_type", "average"] + domain_cols
55
  new_df = new_df[keep_columns]
56
+
57
  return new_df
58
 
59
+
60
  def avg_over_rewardbench(dataframe_core, dataframe_prefs):
61
  """
62
  Averages over the subsets alpacaeval, mt-bench, llmbar, refusals, hep and returns dataframe with only these columns.
 
74
  # for main subsets, keys in subset_mapping, take the weighted avg by example_counts and store for the models
75
  for subset, sub_subsets in subset_mapping.items():
76
  subset_cols = [col for col in new_df.columns if col in sub_subsets]
77
+ sub_data = new_df[subset_cols].values # take the relevant column values
78
+ sub_counts = [example_counts[s] for s in subset_cols] # take the example counts
79
+ new_df[subset] = np.average(sub_data, axis=1, weights=sub_counts) # take the weighted average
80
  # new_df[subset] = np.round(np.nanmean(new_df[subset_cols].values, axis=1), 2)
81
 
82
  data_cols = list(subset_mapping.keys())
83
+ keep_columns = (
84
+ [
85
+ "model",
86
+ ]
87
+ + ["model_type"]
88
+ + data_cols
89
+ )
90
  # keep_columns = ["model", "average"] + subsets
91
  new_df = new_df[keep_columns]
92
 
 
108
  # new_df.at[i, "Prior Sets (0.5 weight)"] = dataframe_prefs[dataframe_prefs["model"] == model]["Prior Sets (0.5 weight)"].values[0]
109
  else:
110
  values.append(np.nan)
111
+
112
  new_df["Prior Sets (0.5 weight)"] = values
113
 
114
  # add total average
 
125
  new_df = new_df[keep_columns]
126
  return new_df
127
 
128
+
129
  def expand_subsets(dataframe):
130
  # TODO need to modify data/ script to do this
131
  pass
 
137
  Then, take the average of the three buckets as "average"
138
  """
139
  new_df = dataframe.copy()
140
+ existing_subsets = new_df.columns[3:] # model, model_type, average
141
  final_subsets = ["Length Bias", "Neutral", "Terse Bias"]
142
  # new data is empty list dict for each final subset
143
  new_data = {s: [] for s in final_subsets}
 
166
  return new_df
167
 
168
 
169
+ rewardbench_data = load_all_data(repo_dir_rewardbench, subdir="eval-set").sort_values(by="average", ascending=False)
 
170
  # rewardbench_data_length = length_bias_check(rewardbench_data).sort_values(by='Terse Bias', ascending=False)
171
  # prefs_data = load_all_data(repo_dir_rewardbench, subdir="pref-sets").sort_values(by='average', ascending=False)
172
  # prefs_data_sub = expand_subsets(prefs_data).sort_values(by='average', ascending=False)
173
 
174
+ rewardbench_data_avg = avg_over_rewardbench_v2(rewardbench_data).sort_values(by="average", ascending=False)
175
+
176
 
177
  def prep_df(df):
178
  # add column to 0th entry with count (column name itself empty)
179
+ df.insert(0, "", range(1, 1 + len(df)))
180
 
181
  # replace "model" with "Model" and "model_type" with "Model Type" and "average" with "Average"
182
  df = df.rename(columns={"model": "Model", "model_type": "Model Type", "average": "Average"})
 
185
  if "Model Type" in df.columns:
186
  # get model_types that have generative in them
187
  mask = df["Model Type"].str.contains("generative", case=False, na=False)
188
+
189
  # set these values to "Generative"
190
  df.loc[mask, "Model Type"] = "Generative"
191
 
192
  return df
193
 
194
+
195
  # add count column to all dataframes
196
  rewardbench_data = prep_df(rewardbench_data)
197
  rewardbench_data_avg = prep_df(rewardbench_data_avg).rename(columns={"Average": "Score"})
198
  # adjust weight of this average to 50% for Prior Sets (0.5 weight), 1 for others
199
 
200
  # rewardbench_data_length = prep_df(rewardbench_data_length)
201
+ # prefs_data = prep_df(prefs_data)
202
 
203
  col_types_rewardbench = ["number"] + ["markdown"] + ["str"] + ["number"] * (len(rewardbench_data.columns) - 1)
204
+ col_types_rewardbench_avg = ["number"] + ["markdown"] + ["str"] + ["number"] * (len(rewardbench_data_avg.columns) - 1)
205
+ # cols_rewardbench_data_length = ["markdown"] + ["number"] * (len(rewardbench_data_length.columns) - 1)
206
+ # col_types_prefs = ["number"] + ["markdown"] + ["number"] * (len(prefs_data.columns) - 1)
207
  ## col_types_prefs_sub = ["markdown"] + ["number"] * (len(prefs_data_sub.columns) - 1)
208
 
209
  # for showing random samples
210
  eval_set = load_dataset(eval_set_repo, use_auth_token=COLLAB_TOKEN, split="test")
211
+
212
+
213
  def random_sample(r: gr.Request, subset):
214
  if subset is None or subset == []:
215
  sample_index = np.random.randint(0, len(eval_set) - 1)
216
  sample = eval_set[sample_index]
217
+ else: # filter by subsets (can be list)
218
  if isinstance(subset, str):
219
  subset = [subset]
220
  # filter down dataset to only include the subset(s)
 
222
  sample_index = np.random.randint(0, len(eval_set_filtered) - 1)
223
  sample = eval_set_filtered[sample_index]
224
 
225
+ markdown_text = "\n\n".join([f"**{key}**:\n\n{value}" for key, value in sample.items()])
226
  return markdown_text
227
 
228
+
229
  subsets = eval_set.unique("subset")
230
 
231
  color_map = {
 
234
  "Seq. Classifier": "#ffcd75",
235
  "DPO": "#75809c",
236
  }
237
+
238
+
239
  def color_model_type_column(df, color_map):
240
  """
241
  Apply color to the 'Model Type' column of the DataFrame based on a given color mapping.
 
247
  Returns:
248
  pd.Styler: The styled DataFrame.
249
  """
250
+
251
  # Function to apply color based on the model type
252
  def apply_color(val):
253
  color = color_map.get(val, "default") # Default color if not specified in color_map
254
+ return f"background-color: {color}"
255
+
256
  # Format for different columns
257
+ format_dict = {col: "{:.1f}" for col in df.columns if col not in ["Average", "Model", "Model Type"]}
258
+ format_dict["Average"] = "{:.2f}"
259
+ format_dict[""] = "{:d}"
260
+
261
+ return df.style.applymap(apply_color, subset=["Model Type"]).format(format_dict, na_rep="")
262
 
 
263
 
264
  def regex_table(dataframe, regex, filter_button, style=True):
265
  """
 
268
  # Split regex statement by comma and trim whitespace around regexes
269
  regex_list = [x.strip() for x in regex.split(",")]
270
  # Join the list into a single regex pattern with '|' acting as OR
271
+ combined_regex = "|".join(regex_list)
272
 
273
  # remove internal ai2 data
274
  dataframe = dataframe[~dataframe["Model"].str.contains("ai2", case=False, na=False)]
275
+
276
  # if filter_button, remove all rows with "ai2" in the model name
277
  update_scores = False
278
  if isinstance(filter_button, list) or isinstance(filter_button, str):
279
+ if "Prior Sets" not in filter_button and "Prior Sets (0.5 weight)" in dataframe.columns:
280
  update_scores = True
281
  # remove the column "Prior Sets (0.5 weight)" from the outputted table
282
+ dataframe = dataframe.drop(columns=["Prior Sets (0.5 weight)"])
283
  if "Seq. Classifiers" not in filter_button:
284
  dataframe = dataframe[~dataframe["Model Type"].str.contains("Seq. Classifier", case=False, na=False)]
285
  if "DPO" not in filter_button:
 
297
  # if "Prior Sets (0.5 weight)" in data.columns:
298
  # data["Prior Sets (0.5 weight)"] = np.nan
299
  # sort array by Score column
300
+ data = data.sort_values(by="Score", ascending=False)
301
 
302
  data.reset_index(drop=True, inplace=True)
303
 
304
  # replace column '' with count/rank
305
+ data[""] = np.arange(1, 1 + len(data))
306
 
307
  # if Score exists, round to 2 decimals
308
  if "Score" in data.columns:
 
313
  for col in data.columns:
314
  if col not in ["", "Model", "Model Type", "Score", "Average"]:
315
  # replace any data[col].values == '' with np.nan
316
+ data[col] = data[col].replace("", np.nan)
317
  data[col] = np.round(np.array(data[col].values).astype(float), 1)
318
  if style:
319
  # apply color
 
321
 
322
  return data
323
 
324
+
325
  # import ipdb; ipdb.set_trace()
326
 
327
+ total_models = len(
328
+ regex_table(
329
+ rewardbench_data_avg.copy(), "", ["Seq. Classifiers", "DPO", "Custom Classifiers", "Generative"], style=False
330
+ ).values
331
+ )
332
+ assets = Path("src").resolve() # absolute dir with the image
333
+
334
+ # Using a string for a predefined color
335
+ theme = gr.themes.Default(primary_hue="blue")
336
 
337
+ with gr.Blocks(theme=theme, css=custom_css) as app:
338
  # create tabs for the app, moving the current table to one titled "rewardbench" and the benchmark_text to a tab called "About"
339
  with gr.Row():
340
  with gr.Column(scale=6):
341
+ gr.Markdown(TOP_TEXT)
342
+ # with gr.Column(scale=4):
343
+ # # search = gr.Textbox(label="Model Search (delimit with , )", placeholder="Regex search for a model")
344
+ # # filter_button = gr.Checkbox(label="Include AI2 training runs (or type ai2 above).", interactive=True)
345
+ # # img = gr.Image(value="https://private-user-images.githubusercontent.com/10695622/310698241-24ed272a-0844-451f-b414-fde57478703e.png", width=500)
346
+ # gr.Markdown("""
347
+ # ![](/gradio_api/file=src/logo.png)
348
+ # """)
349
+
350
+ with gr.Tabs(elem_id="outer-tabs", elem_classes="tabs-big") as tabs_big:
351
+ with gr.TabItem("🏆 RewardBench 2", scale=1.5):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
352
  with gr.Row():
353
+ with gr.Column(scale=7):
354
+ gr.Markdown(CAPTION_V2.format(str(total_models)))
355
+ with gr.Column(scale=3):
356
+ # search = gr.Textbox(label="Model Search (delimit with , )", placeholder="Regex search for a model")
357
+ # filter_button = gr.Checkbox(label="Include AI2 training runs (or type ai2 above).", interactive=True)
358
+ # img = gr.Image(value="https://private-user-images.githubusercontent.com/10695622/310698241-24ed272a-0844-451f-b414-fde57478703e.png", width=500)
359
+ gr.Markdown(
360
+ """
361
+ ![](/gradio_api/file=src/logo.png)
362
+ """
363
+ )
364
+ with gr.Tabs(elem_id="inner-tabs", elem_classes="tabs-small") as tabs:
365
+ with gr.TabItem("Leaderboard"):
366
+ with gr.Row():
367
+ search_1 = gr.Textbox(
368
+ label="Model Search (delimit with , )",
369
+ placeholder="Model Search (delimit with , )",
370
+ show_label=False,
371
+ )
372
+ model_types_1 = gr.CheckboxGroup(
373
+ ["Seq. Classifiers", "DPO", "Custom Classifiers", "Generative"],
374
+ value=["Seq. Classifiers", "Custom Classifiers", "Generative"],
375
+ label="Model Types",
376
+ show_label=False,
377
+ # info="Which model types to include.",
378
+ )
379
+ with gr.Row():
380
+ # reference data
381
+ rewardbench_table_hidden = gr.Dataframe(
382
+ rewardbench_data_avg.values,
383
+ datatype=col_types_rewardbench_avg,
384
+ headers=rewardbench_data_avg.columns.tolist(),
385
+ visible=False,
386
+ )
387
+ rewardbench_table = gr.Dataframe(
388
+ regex_table(
389
+ rewardbench_data_avg.copy(),
390
+ "",
391
+ ["Seq. Classifiers", "Custom Classifiers", "Generative"],
392
+ ),
393
+ datatype=col_types_rewardbench_avg,
394
+ headers=rewardbench_data_avg.columns.tolist(),
395
+ elem_id="rewardbench_dataframe_avg",
396
+ max_height=800, # 800 px ≈ ~25 rows on default row-height
397
+ )
398
+
399
+ # removed because the data does not have sub-domains
400
+ # with gr.TabItem("Detailed"):
401
+ # with gr.Row():
402
+ # search_2 = gr.Textbox(label="Model Search (delimit with , )", show_label=False, placeholder="Model Search (delimit with , )")
403
+ # model_types_2 = gr.CheckboxGroup(["Seq. Classifiers", "DPO", "Custom Classifiers", "Generative"],
404
+ # value=["Seq. Classifiers", "DPO", "Generative", "Custom Classifiers"],
405
+ # label="Model Types",
406
+ # show_label=False,
407
+ # # info="Which model types to include."
408
+ # )
409
+ # with gr.Row():
410
+ # # ref data
411
+ # rewardbench_table_detailed_hidden = gr.Dataframe(
412
+ # rewardbench_data.values,
413
+ # datatype=col_types_rewardbench,
414
+ # headers=rewardbench_data.columns.tolist(),
415
+ # visible=False,
416
+ # )
417
+ # rewardbench_table_detailed = gr.Dataframe(
418
+ # regex_table(rewardbench_data.copy(), "", ["Seq. Classifiers", "DPO", "Generative", "Custom Classifiers"]),
419
+ # datatype=col_types_rewardbench,
420
+ # headers=rewardbench_data.columns.tolist(),
421
+ # elem_id="rewardbench_dataframe",
422
+ # # height=1000,
423
+ # )
424
+
425
+ with gr.TabItem("About"):
426
+ with gr.Row():
427
+ gr.Markdown(ABOUT_TEXT_V2)
428
+
429
+ with gr.TabItem("Dataset Viewer"):
430
+ with gr.Row():
431
+ # loads one sample
432
+ gr.Markdown("""## Random Dataset Sample Viewer""")
433
+ subset_selector = gr.Dropdown(subsets, label="Subset", value=None, multiselect=True)
434
+ button = gr.Button("Show Random Sample")
435
+
436
+ with gr.Row():
437
+ sample_display = gr.Markdown("{sampled data loads here}")
438
+
439
+ button.click(fn=random_sample, inputs=[subset_selector], outputs=[sample_display])
440
+ with gr.TabItem("RewardBench", scale=1.5):
441
  with gr.Row():
442
+ gr.Markdown(CAPTION_V1.format(str(total_models)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
443
 
444
  search_1.change(regex_table, inputs=[rewardbench_table_hidden, search_1, model_types_1], outputs=rewardbench_table)
445
+ # search_2.change(regex_table, inputs=[rewardbench_table_detailed_hidden, search_2, model_types_2], outputs=rewardbench_table_detailed)
446
+
447
+ model_types_1.change(
448
+ regex_table, inputs=[rewardbench_table_hidden, search_1, model_types_1], outputs=rewardbench_table
449
+ )
450
+ # model_types_2.change(regex_table, inputs=[rewardbench_table_detailed_hidden, search_2, model_types_2], outputs=rewardbench_table_detailed)
 
451
 
452
  with gr.Row():
453
  with gr.Accordion("📚 Citation", open=False):
454
  citation_button = gr.Textbox(
455
+ value=r"""@misc{RewardBench2,
456
+ title={RewardBench 2: Advancing Reward Model Evaluation},
457
+ author={Malik, Saumya and Pyatkin, Valentina and Land, Sander and Morrison, Jacob and Smith, Noah A. and Hajishirzi, Hannaneh and Lambert, Nathan},
458
+ year={2024},
459
+ howpublished={\url{https://huggingface.co/spaces/allenai/reward-bench-2}},
460
+ }
461
+
462
+ @misc{RewardBench,
463
  title={RewardBench: Evaluating Reward Models for Language Modeling},
464
  author={Lambert, Nathan and Pyatkin, Valentina and Morrison, Jacob and Miranda, LJ and Lin, Bill Yuchen and Chandu, Khyathi and Dziri, Nouha and Kumar, Sachin and Zick, Tom and Choi, Yejin and Smith, Noah A. and Hajishirzi, Hannaneh},
465
  year={2024},
 
470
  elem_id="citation-button",
471
  show_copy_button=True,
472
  )
 
 
 
 
 
 
 
 
 
 
473
 
474
+ app.launch(allowed_paths=[str(assets)]) # had .queue() before launch before... not sure if that's necessary
 
 
 
src/about.py DELETED
@@ -1,72 +0,0 @@
1
- from dataclasses import dataclass
2
- from enum import Enum
3
-
4
- @dataclass
5
- class Task:
6
- benchmark: str
7
- metric: str
8
- col_name: str
9
-
10
-
11
- # Select your tasks here
12
- # ---------------------------------------------------
13
- class Tasks(Enum):
14
- # task_key in the json file, metric_key in the json file, name to display in the leaderboard
15
- task0 = Task("anli_r1", "acc", "ANLI")
16
- task1 = Task("logiqa", "acc_norm", "LogiQA")
17
-
18
- NUM_FEWSHOT = 0 # Change with your few shot
19
- # ---------------------------------------------------
20
-
21
-
22
-
23
- # Your leaderboard name
24
- TITLE = """<h1 align="center" id="space-title">Demo leaderboard</h1>"""
25
-
26
- # What does your leaderboard evaluate?
27
- INTRODUCTION_TEXT = """
28
- Intro text
29
- """
30
-
31
- # Which evaluations are you running? how can people reproduce what you have?
32
- LLM_BENCHMARKS_TEXT = f"""
33
- ## How it works
34
-
35
- ## Reproducibility
36
- To reproduce our results, here is the commands you can run:
37
-
38
- """
39
-
40
- EVALUATION_QUEUE_TEXT = """
41
- ## Some good practices before submitting a model
42
-
43
- ### 1) Make sure you can load your model and tokenizer using AutoClasses:
44
- ```python
45
- from transformers import AutoConfig, AutoModel, AutoTokenizer
46
- config = AutoConfig.from_pretrained("your model name", revision=revision)
47
- model = AutoModel.from_pretrained("your model name", revision=revision)
48
- tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
49
- ```
50
- If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
51
-
52
- Note: make sure your model is public!
53
- Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
54
-
55
- ### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
56
- It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
57
-
58
- ### 3) Make sure your model has an open license!
59
- This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
60
-
61
- ### 4) Fill up your model card
62
- When we add extra information about models to the leaderboard, it will be automatically taken from the model card
63
-
64
- ## In case of model failure
65
- If your model is displayed in the `FAILED` category, its execution stopped.
66
- Make sure you have followed the above steps first.
67
- If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
68
- """
69
-
70
- CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
71
- CITATION_BUTTON_TEXT = r"""
72
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/constants.py CHANGED
@@ -1,28 +1,28 @@
1
  # reference for length bias categories
2
  length_categories = {
3
- 'alpacaeval-easy': 'True',
4
- 'alpacaeval-hard': 'True',
5
- 'alpacaeval-length': 'Neutral',
6
- 'donotanswer': 'False',
7
- 'hep-cpp': 'Neutral',
8
- 'hep-go': 'Neutral',
9
- 'hep-java': 'Neutral',
10
- 'hep-js': 'Neutral',
11
- 'hep-python': 'Neutral',
12
- 'hep-rust': 'Neutral',
13
- 'llmbar-adver-GPTInst': 'False',
14
- 'llmbar-adver-GPTOut': 'Neutral',
15
- 'llmbar-adver-manual': 'False',
16
- 'llmbar-adver-neighbor': 'False',
17
- 'llmbar-natural': 'Neutral',
18
- 'math-prm': 'Neutral',
19
- 'mt-bench-easy': 'False',
20
- 'mt-bench-hard': 'False',
21
- 'mt-bench-med': 'Neutral',
22
- 'refusals-dangerous': 'False',
23
- 'refusals-offensive': 'False',
24
- 'xstest-should-refuse': 'False',
25
- 'xstest-should-respond': 'True'
26
  }
27
 
28
  example_counts = {
@@ -32,7 +32,7 @@ example_counts = {
32
  "mt-bench-easy": 28,
33
  "mt-bench-med": 40,
34
  "mt-bench-hard": 37,
35
- "math-prm": 984, # actual length 447, upweighting to be equal to code
36
  "refusals-dangerous": 100,
37
  "refusals-offensive": 100,
38
  "llmbar-natural": 100,
@@ -41,20 +41,33 @@ example_counts = {
41
  "llmbar-adver-GPTOut": 47,
42
  "llmbar-adver-manual": 46,
43
  "xstest-should-refuse": 154,
44
- "xstest-should-respond": 250, # Note, refuse and respond were accidentally swapped until 9 Sept 2024
45
  "donotanswer": 136,
46
  "hep-cpp": 164,
47
  "hep-go": 164,
48
  "hep-java": 164,
49
  "hep-js": 164,
50
  "hep-python": 164,
51
- "hep-rust": 164
52
  }
53
 
54
  # note, this order should match the dataframe.
55
  subset_mapping = {
56
- "Chat": ['alpacaeval-easy', 'alpacaeval-hard', 'alpacaeval-length', 'mt-bench-easy', 'mt-bench-med'],
57
- "Chat Hard": ['llmbar-adver-GPTInst', 'llmbar-adver-GPTOut', 'llmbar-adver-manual', 'llmbar-adver-neighbor', 'llmbar-natural', 'mt-bench-hard'],
58
- "Safety": ['donotanswer', 'refusals-dangerous', 'refusals-offensive', 'xstest-should-refuse', 'xstest-should-respond'],
59
- "Reasoning": ["hep-cpp", "hep-go", "hep-java", "hep-js", "hep-python", "hep-rust", "math-prm"]
 
 
 
 
 
 
 
 
 
 
 
 
 
60
  }
 
1
  # reference for length bias categories
2
  length_categories = {
3
+ "alpacaeval-easy": "True",
4
+ "alpacaeval-hard": "True",
5
+ "alpacaeval-length": "Neutral",
6
+ "donotanswer": "False",
7
+ "hep-cpp": "Neutral",
8
+ "hep-go": "Neutral",
9
+ "hep-java": "Neutral",
10
+ "hep-js": "Neutral",
11
+ "hep-python": "Neutral",
12
+ "hep-rust": "Neutral",
13
+ "llmbar-adver-GPTInst": "False",
14
+ "llmbar-adver-GPTOut": "Neutral",
15
+ "llmbar-adver-manual": "False",
16
+ "llmbar-adver-neighbor": "False",
17
+ "llmbar-natural": "Neutral",
18
+ "math-prm": "Neutral",
19
+ "mt-bench-easy": "False",
20
+ "mt-bench-hard": "False",
21
+ "mt-bench-med": "Neutral",
22
+ "refusals-dangerous": "False",
23
+ "refusals-offensive": "False",
24
+ "xstest-should-refuse": "False",
25
+ "xstest-should-respond": "True",
26
  }
27
 
28
  example_counts = {
 
32
  "mt-bench-easy": 28,
33
  "mt-bench-med": 40,
34
  "mt-bench-hard": 37,
35
+ "math-prm": 984, # actual length 447, upweighting to be equal to code
36
  "refusals-dangerous": 100,
37
  "refusals-offensive": 100,
38
  "llmbar-natural": 100,
 
41
  "llmbar-adver-GPTOut": 47,
42
  "llmbar-adver-manual": 46,
43
  "xstest-should-refuse": 154,
44
+ "xstest-should-respond": 250, # Note, refuse and respond were accidentally swapped until 9 Sept 2024
45
  "donotanswer": 136,
46
  "hep-cpp": 164,
47
  "hep-go": 164,
48
  "hep-java": 164,
49
  "hep-js": 164,
50
  "hep-python": 164,
51
+ "hep-rust": 164,
52
  }
53
 
54
  # note, this order should match the dataframe.
55
  subset_mapping = {
56
+ "Chat": ["alpacaeval-easy", "alpacaeval-hard", "alpacaeval-length", "mt-bench-easy", "mt-bench-med"],
57
+ "Chat Hard": [
58
+ "llmbar-adver-GPTInst",
59
+ "llmbar-adver-GPTOut",
60
+ "llmbar-adver-manual",
61
+ "llmbar-adver-neighbor",
62
+ "llmbar-natural",
63
+ "mt-bench-hard",
64
+ ],
65
+ "Safety": [
66
+ "donotanswer",
67
+ "refusals-dangerous",
68
+ "refusals-offensive",
69
+ "xstest-should-refuse",
70
+ "xstest-should-respond",
71
+ ],
72
+ "Reasoning": ["hep-cpp", "hep-go", "hep-java", "hep-js", "hep-python", "hep-rust", "math-prm"],
73
  }
src/css.py CHANGED
@@ -1,3 +1,4 @@
 
1
  custom_css = """
2
 
3
  /* Full width space */
@@ -11,12 +12,11 @@ custom_css = """
11
  }
12
 
13
  .tab-buttons button {
14
- font-size: 20px;
15
  }
16
 
17
  h1 {
18
  font-size: 32px !important;
19
  margin-top: 0px !important;
20
  }
21
-
22
- """
 
1
+ ACCENT = "#245ED4" # OLMo Blue. Not currently used.
2
  custom_css = """
3
 
4
  /* Full width space */
 
12
  }
13
 
14
  .tab-buttons button {
15
+ font-size: 30px;
16
  }
17
 
18
  h1 {
19
  font-size: 32px !important;
20
  margin-top: 0px !important;
21
  }
22
+ """
 
src/display/css_html_js.py DELETED
@@ -1,105 +0,0 @@
1
- custom_css = """
2
-
3
- .markdown-text {
4
- font-size: 16px !important;
5
- }
6
-
7
- #models-to-add-text {
8
- font-size: 18px !important;
9
- }
10
-
11
- #citation-button span {
12
- font-size: 16px !important;
13
- }
14
-
15
- #citation-button textarea {
16
- font-size: 16px !important;
17
- }
18
-
19
- #citation-button > label > button {
20
- margin: 6px;
21
- transform: scale(1.3);
22
- }
23
-
24
- #leaderboard-table {
25
- margin-top: 15px
26
- }
27
-
28
- #leaderboard-table-lite {
29
- margin-top: 15px
30
- }
31
-
32
- #search-bar-table-box > div:first-child {
33
- background: none;
34
- border: none;
35
- }
36
-
37
- #search-bar {
38
- padding: 0px;
39
- }
40
-
41
- /* Limit the width of the first AutoEvalColumn so that names don't expand too much */
42
- #leaderboard-table td:nth-child(2),
43
- #leaderboard-table th:nth-child(2) {
44
- max-width: 600px;
45
- overflow: auto;
46
- white-space: nowrap;
47
- }
48
-
49
- .tab-buttons button {
50
- font-size: 20px;
51
- }
52
-
53
- #scale-logo {
54
- border-style: none !important;
55
- box-shadow: none;
56
- display: block;
57
- margin-left: auto;
58
- margin-right: auto;
59
- max-width: 600px;
60
- }
61
-
62
- #scale-logo .download {
63
- display: none;
64
- }
65
- #filter_type{
66
- border: 0;
67
- padding-left: 0;
68
- padding-top: 0;
69
- }
70
- #filter_type label {
71
- display: flex;
72
- }
73
- #filter_type label > span{
74
- margin-top: var(--spacing-lg);
75
- margin-right: 0.5em;
76
- }
77
- #filter_type label > .wrap{
78
- width: 103px;
79
- }
80
- #filter_type label > .wrap .wrap-inner{
81
- padding: 2px;
82
- }
83
- #filter_type label > .wrap .wrap-inner input{
84
- width: 1px
85
- }
86
- #filter-columns-type{
87
- border:0;
88
- padding:0.5;
89
- }
90
- #filter-columns-size{
91
- border:0;
92
- padding:0.5;
93
- }
94
- #box-filter > .form{
95
- border: 0
96
- }
97
- """
98
-
99
- get_window_url_params = """
100
- function(url_params) {
101
- const params = new URLSearchParams(window.location.search);
102
- url_params = Object.fromEntries(params);
103
- return url_params;
104
- }
105
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/display/formatting.py DELETED
@@ -1,27 +0,0 @@
1
- def model_hyperlink(link, model_name):
2
- return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
3
-
4
-
5
- def make_clickable_model(model_name):
6
- link = f"https://huggingface.co/{model_name}"
7
- return model_hyperlink(link, model_name)
8
-
9
-
10
- def styled_error(error):
11
- return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
12
-
13
-
14
- def styled_warning(warn):
15
- return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
16
-
17
-
18
- def styled_message(message):
19
- return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
20
-
21
-
22
- def has_no_nan_values(df, columns):
23
- return df[columns].notna().all(axis=1)
24
-
25
-
26
- def has_nan_values(df, columns):
27
- return df[columns].isna().any(axis=1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/display/utils.py DELETED
@@ -1,110 +0,0 @@
1
- from dataclasses import dataclass, make_dataclass
2
- from enum import Enum
3
-
4
- import pandas as pd
5
-
6
- from src.about import Tasks
7
-
8
- def fields(raw_class):
9
- return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
10
-
11
-
12
- # These classes are for user facing column names,
13
- # to avoid having to change them all around the code
14
- # when a modif is needed
15
- @dataclass
16
- class ColumnContent:
17
- name: str
18
- type: str
19
- displayed_by_default: bool
20
- hidden: bool = False
21
- never_hidden: bool = False
22
-
23
- ## Leaderboard columns
24
- auto_eval_column_dict = []
25
- # Init
26
- auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
27
- auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
28
- #Scores
29
- auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
30
- for task in Tasks:
31
- auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
32
- # Model information
33
- auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
34
- auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
35
- auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
36
- auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
37
- auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
38
- auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
39
- auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
40
- auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
41
- auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
42
-
43
- # We use make dataclass to dynamically fill the scores from Tasks
44
- AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
45
-
46
- ## For the queue columns in the submission tab
47
- @dataclass(frozen=True)
48
- class EvalQueueColumn: # Queue column
49
- model = ColumnContent("model", "markdown", True)
50
- revision = ColumnContent("revision", "str", True)
51
- private = ColumnContent("private", "bool", True)
52
- precision = ColumnContent("precision", "str", True)
53
- weight_type = ColumnContent("weight_type", "str", "Original")
54
- status = ColumnContent("status", "str", True)
55
-
56
- ## All the model information that we might need
57
- @dataclass
58
- class ModelDetails:
59
- name: str
60
- display_name: str = ""
61
- symbol: str = "" # emoji
62
-
63
-
64
- class ModelType(Enum):
65
- PT = ModelDetails(name="pretrained", symbol="🟢")
66
- FT = ModelDetails(name="fine-tuned", symbol="🔶")
67
- IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
68
- RL = ModelDetails(name="RL-tuned", symbol="🟦")
69
- Unknown = ModelDetails(name="", symbol="?")
70
-
71
- def to_str(self, separator=" "):
72
- return f"{self.value.symbol}{separator}{self.value.name}"
73
-
74
- @staticmethod
75
- def from_str(type):
76
- if "fine-tuned" in type or "🔶" in type:
77
- return ModelType.FT
78
- if "pretrained" in type or "🟢" in type:
79
- return ModelType.PT
80
- if "RL-tuned" in type or "🟦" in type:
81
- return ModelType.RL
82
- if "instruction-tuned" in type or "⭕" in type:
83
- return ModelType.IFT
84
- return ModelType.Unknown
85
-
86
- class WeightType(Enum):
87
- Adapter = ModelDetails("Adapter")
88
- Original = ModelDetails("Original")
89
- Delta = ModelDetails("Delta")
90
-
91
- class Precision(Enum):
92
- float16 = ModelDetails("float16")
93
- bfloat16 = ModelDetails("bfloat16")
94
- Unknown = ModelDetails("?")
95
-
96
- def from_str(precision):
97
- if precision in ["torch.float16", "float16"]:
98
- return Precision.float16
99
- if precision in ["torch.bfloat16", "bfloat16"]:
100
- return Precision.bfloat16
101
- return Precision.Unknown
102
-
103
- # Column selection
104
- COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
105
-
106
- EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
107
- EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
108
-
109
- BENCHMARK_COLS = [t.value.col_name for t in Tasks]
110
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/envs.py DELETED
@@ -1,25 +0,0 @@
1
- import os
2
-
3
- from huggingface_hub import HfApi
4
-
5
- # Info to change for your repository
6
- # ----------------------------------
7
- TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
8
-
9
- OWNER = "demo-leaderboard-backend" # Change to your org - don't forget to create a results and request dataset, with the correct format!
10
- # ----------------------------------
11
-
12
- REPO_ID = f"{OWNER}/leaderboard"
13
- QUEUE_REPO = f"{OWNER}/requests"
14
- RESULTS_REPO = f"{OWNER}/results"
15
-
16
- # If you setup a cache later, just change HF_HOME
17
- CACHE_PATH=os.getenv("HF_HOME", ".")
18
-
19
- # Local caches
20
- EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
21
- EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
22
- EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
23
- EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
24
-
25
- API = HfApi(token=TOKEN)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/leaderboard/read_evals.py DELETED
@@ -1,196 +0,0 @@
1
- import glob
2
- import json
3
- import math
4
- import os
5
- from dataclasses import dataclass
6
-
7
- import dateutil
8
- import numpy as np
9
-
10
- from src.display.formatting import make_clickable_model
11
- from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
12
- from src.submission.check_validity import is_model_on_hub
13
-
14
-
15
- @dataclass
16
- class EvalResult:
17
- """Represents one full evaluation. Built from a combination of the result and request file for a given run.
18
- """
19
- eval_name: str # org_model_precision (uid)
20
- full_model: str # org/model (path on hub)
21
- org: str
22
- model: str
23
- revision: str # commit hash, "" if main
24
- results: dict
25
- precision: Precision = Precision.Unknown
26
- model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
27
- weight_type: WeightType = WeightType.Original # Original or Adapter
28
- architecture: str = "Unknown"
29
- license: str = "?"
30
- likes: int = 0
31
- num_params: int = 0
32
- date: str = "" # submission date of request file
33
- still_on_hub: bool = False
34
-
35
- @classmethod
36
- def init_from_json_file(self, json_filepath):
37
- """Inits the result from the specific model result file"""
38
- with open(json_filepath) as fp:
39
- data = json.load(fp)
40
-
41
- config = data.get("config")
42
-
43
- # Precision
44
- precision = Precision.from_str(config.get("model_dtype"))
45
-
46
- # Get model and org
47
- org_and_model = config.get("model_name", config.get("model_args", None))
48
- org_and_model = org_and_model.split("/", 1)
49
-
50
- if len(org_and_model) == 1:
51
- org = None
52
- model = org_and_model[0]
53
- result_key = f"{model}_{precision.value.name}"
54
- else:
55
- org = org_and_model[0]
56
- model = org_and_model[1]
57
- result_key = f"{org}_{model}_{precision.value.name}"
58
- full_model = "/".join(org_and_model)
59
-
60
- still_on_hub, _, model_config = is_model_on_hub(
61
- full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
62
- )
63
- architecture = "?"
64
- if model_config is not None:
65
- architectures = getattr(model_config, "architectures", None)
66
- if architectures:
67
- architecture = ";".join(architectures)
68
-
69
- # Extract results available in this file (some results are split in several files)
70
- results = {}
71
- for task in Tasks:
72
- task = task.value
73
-
74
- # We average all scores of a given metric (not all metrics are present in all files)
75
- accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
76
- if accs.size == 0 or any([acc is None for acc in accs]):
77
- continue
78
-
79
- mean_acc = np.mean(accs) * 100.0
80
- results[task.benchmark] = mean_acc
81
-
82
- return self(
83
- eval_name=result_key,
84
- full_model=full_model,
85
- org=org,
86
- model=model,
87
- results=results,
88
- precision=precision,
89
- revision= config.get("model_sha", ""),
90
- still_on_hub=still_on_hub,
91
- architecture=architecture
92
- )
93
-
94
- def update_with_request_file(self, requests_path):
95
- """Finds the relevant request file for the current model and updates info with it"""
96
- request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
97
-
98
- try:
99
- with open(request_file, "r") as f:
100
- request = json.load(f)
101
- self.model_type = ModelType.from_str(request.get("model_type", ""))
102
- self.weight_type = WeightType[request.get("weight_type", "Original")]
103
- self.license = request.get("license", "?")
104
- self.likes = request.get("likes", 0)
105
- self.num_params = request.get("params", 0)
106
- self.date = request.get("submitted_time", "")
107
- except Exception:
108
- print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
109
-
110
- def to_dict(self):
111
- """Converts the Eval Result to a dict compatible with our dataframe display"""
112
- average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
113
- data_dict = {
114
- "eval_name": self.eval_name, # not a column, just a save name,
115
- AutoEvalColumn.precision.name: self.precision.value.name,
116
- AutoEvalColumn.model_type.name: self.model_type.value.name,
117
- AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
118
- AutoEvalColumn.weight_type.name: self.weight_type.value.name,
119
- AutoEvalColumn.architecture.name: self.architecture,
120
- AutoEvalColumn.model.name: make_clickable_model(self.full_model),
121
- AutoEvalColumn.revision.name: self.revision,
122
- AutoEvalColumn.average.name: average,
123
- AutoEvalColumn.license.name: self.license,
124
- AutoEvalColumn.likes.name: self.likes,
125
- AutoEvalColumn.params.name: self.num_params,
126
- AutoEvalColumn.still_on_hub.name: self.still_on_hub,
127
- }
128
-
129
- for task in Tasks:
130
- data_dict[task.value.col_name] = self.results[task.value.benchmark]
131
-
132
- return data_dict
133
-
134
-
135
- def get_request_file_for_model(requests_path, model_name, precision):
136
- """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
137
- request_files = os.path.join(
138
- requests_path,
139
- f"{model_name}_eval_request_*.json",
140
- )
141
- request_files = glob.glob(request_files)
142
-
143
- # Select correct request file (precision)
144
- request_file = ""
145
- request_files = sorted(request_files, reverse=True)
146
- for tmp_request_file in request_files:
147
- with open(tmp_request_file, "r") as f:
148
- req_content = json.load(f)
149
- if (
150
- req_content["status"] in ["FINISHED"]
151
- and req_content["precision"] == precision.split(".")[-1]
152
- ):
153
- request_file = tmp_request_file
154
- return request_file
155
-
156
-
157
- def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
158
- """From the path of the results folder root, extract all needed info for results"""
159
- model_result_filepaths = []
160
-
161
- for root, _, files in os.walk(results_path):
162
- # We should only have json files in model results
163
- if len(files) == 0 or any([not f.endswith(".json") for f in files]):
164
- continue
165
-
166
- # Sort the files by date
167
- try:
168
- files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
169
- except dateutil.parser._parser.ParserError:
170
- files = [files[-1]]
171
-
172
- for file in files:
173
- model_result_filepaths.append(os.path.join(root, file))
174
-
175
- eval_results = {}
176
- for model_result_filepath in model_result_filepaths:
177
- # Creation of result
178
- eval_result = EvalResult.init_from_json_file(model_result_filepath)
179
- eval_result.update_with_request_file(requests_path)
180
-
181
- # Store results of same eval together
182
- eval_name = eval_result.eval_name
183
- if eval_name in eval_results.keys():
184
- eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
185
- else:
186
- eval_results[eval_name] = eval_result
187
-
188
- results = []
189
- for v in eval_results.values():
190
- try:
191
- v.to_dict() # we test if the dict version is complete
192
- results.append(v)
193
- except KeyError: # not all eval values present
194
- continue
195
-
196
- return results
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/md.py CHANGED
@@ -1,7 +1,10 @@
1
  from datetime import datetime
 
2
  import pytz
3
 
4
- ABOUT_TEXT = """
 
 
5
  We compute the win percentage for a reward model on hand curated chosen-rejected pairs for each prompt.
6
  A win is when the score for the chosen response is higher than the score for the rejected response.
7
 
@@ -96,11 +99,20 @@ For more details, see the [dataset](https://huggingface.co/datasets/allenai/rewa
96
  """
97
 
98
  # Get Pacific time zone (handles PST/PDT automatically)
99
- pacific_tz = pytz.timezone('America/Los_Angeles')
100
  current_time = datetime.now(pacific_tz).strftime("%H:%M %Z, %d %b %Y")
101
 
102
- TOP_TEXT = f"""# RewardBench: Evaluating Reward Models
103
  ### Evaluating the capabilities, safety, and pitfalls of reward models
104
- [Code](https://github.com/allenai/reward-bench) | [Eval. Dataset](https://huggingface.co/datasets/allenai/reward-bench-v2-v0) | [Prior Test Sets](https://huggingface.co/datasets/allenai/pref-test-sets) | [Results](https://huggingface.co/datasets/allenai/reward-bench-v2-results) | [Paper](https://arxiv.org/abs/2403.13787) | Total models: {{}} | * Unverified models | ⚠️ Dataset Contamination | Last restart (PST): {current_time}
 
 
105
 
106
- ⚠️ Many of the top models were trained on unintentionally contaminated, AI-generated data, for more information, see this [gist](https://gist.github.com/natolambert/1aed306000c13e0e8c5bc17c1a5dd300)."""
 
 
 
 
 
 
 
 
1
  from datetime import datetime
2
+
3
  import pytz
4
 
5
+ ABOUT_TEXT_V2 = """TODO"""
6
+
7
+ ABOUT_TEXT_V1 = """
8
  We compute the win percentage for a reward model on hand curated chosen-rejected pairs for each prompt.
9
  A win is when the score for the chosen response is higher than the score for the rejected response.
10
 
 
99
  """
100
 
101
  # Get Pacific time zone (handles PST/PDT automatically)
102
+ pacific_tz = pytz.timezone("America/Los_Angeles")
103
  current_time = datetime.now(pacific_tz).strftime("%H:%M %Z, %d %b %Y")
104
 
105
+ TOP_TEXT = """# RewardBench: Evaluating Reward Models
106
  ### Evaluating the capabilities, safety, and pitfalls of reward models
107
+ """
108
+
109
+ CAPTION_V2 = f"""The *new version* of RewardBench that is based on unseen human data and designed to be substantially more difficult!
110
 
111
+ [Code](https://github.com/allenai/reward-bench) | [Eval. Dataset](https://huggingface.co/datasets/allenai/reward-bench-v2-v0) | [Prior Test Sets](https://huggingface.co/datasets/allenai/pref-test-sets) | [Results](https://huggingface.co/datasets/allenai/reward-bench-v2-results) | [Paper (TODO)](TODO) | Total models: {{}} | Last restart (PST): {current_time}"""
112
+
113
+ CAPTION_V1 = """The original RewardBench -- the first reward model evaluation.
114
+
115
+ **Note**: This leaderboard is frozen and will not be updated. The final version of the evaluation results are available [here](TODO).
116
+
117
+ ⚠️ Many of the top models were trained on unintentionally contaminated, AI-generated data, for more information, see this [gist](https://gist.github.com/natolambert/1aed306000c13e0e8c5bc17c1a5dd300).
118
+ """
src/plt.py CHANGED
@@ -1,53 +1,55 @@
1
  import matplotlib.pyplot as plt
2
  import pandas as pd
 
3
  from .utils import undo_hyperlink
4
 
 
5
  def plot_avg_correlation(df1, df2):
6
  """
7
  Plots the "average" column for each unique model that appears in both dataframes.
8
-
9
  Parameters:
10
  - df1: pandas DataFrame containing columns "model" and "average".
11
  - df2: pandas DataFrame containing columns "model" and "average".
12
  """
13
  # Identify the unique models that appear in both DataFrames
14
- common_models = pd.Series(list(set(df1['model']) & set(df2['model'])))
15
-
16
  # Set up the plot
17
  plt.figure(figsize=(13, 6), constrained_layout=True)
18
 
19
- # axes from 0 to 1 for x and y
20
  plt.xlim(0.475, 0.8)
21
  plt.ylim(0.475, 0.8)
22
 
23
  # larger font (16)
24
- plt.rcParams.update({'font.size': 12, 'axes.labelsize': 14,'axes.titlesize': 14})
25
  # plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1)
26
  # plt.tight_layout()
27
  # plt.margins(0,0)
28
 
29
  for model in common_models:
30
  # Filter data for the current model
31
- df1_model_data = df1[df1['model'] == model]['average'].values
32
- df2_model_data = df2[df2['model'] == model]['average'].values
33
-
34
  # Plotting
35
  plt.scatter(df1_model_data, df2_model_data, label=model)
36
  m_name = undo_hyperlink(model)
37
  if m_name == "No text found":
38
  m_name = "Random"
39
- # Add text above each point like
40
  # plt.text(x[i] + 0.1, y[i] + 0.1, label, ha='left', va='bottom')
41
- plt.text(df1_model_data - .005, df2_model_data, m_name, horizontalalignment='right', verticalalignment='center')
 
 
42
 
43
  # add correlation line to scatter plot
44
  # first, compute correlation
45
- corr = df1['average'].corr(df2['average'])
46
  # add correlation line based on corr
47
-
48
-
49
 
50
- plt.xlabel('HERM Eval. Set Avg.', fontsize=16)
51
- plt.ylabel('Pref. Test Sets Avg.', fontsize=16)
52
  # plt.legend(title='Model', bbox_to_anchor=(1.05, 1), loc='upper left')
53
- return plt
 
1
  import matplotlib.pyplot as plt
2
  import pandas as pd
3
+
4
  from .utils import undo_hyperlink
5
 
6
+
7
  def plot_avg_correlation(df1, df2):
8
  """
9
  Plots the "average" column for each unique model that appears in both dataframes.
10
+
11
  Parameters:
12
  - df1: pandas DataFrame containing columns "model" and "average".
13
  - df2: pandas DataFrame containing columns "model" and "average".
14
  """
15
  # Identify the unique models that appear in both DataFrames
16
+ common_models = pd.Series(list(set(df1["model"]) & set(df2["model"])))
17
+
18
  # Set up the plot
19
  plt.figure(figsize=(13, 6), constrained_layout=True)
20
 
21
+ # axes from 0 to 1 for x and y
22
  plt.xlim(0.475, 0.8)
23
  plt.ylim(0.475, 0.8)
24
 
25
  # larger font (16)
26
+ plt.rcParams.update({"font.size": 12, "axes.labelsize": 14, "axes.titlesize": 14})
27
  # plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1)
28
  # plt.tight_layout()
29
  # plt.margins(0,0)
30
 
31
  for model in common_models:
32
  # Filter data for the current model
33
+ df1_model_data = df1[df1["model"] == model]["average"].values
34
+ df2_model_data = df2[df2["model"] == model]["average"].values
35
+
36
  # Plotting
37
  plt.scatter(df1_model_data, df2_model_data, label=model)
38
  m_name = undo_hyperlink(model)
39
  if m_name == "No text found":
40
  m_name = "Random"
41
+ # Add text above each point like
42
  # plt.text(x[i] + 0.1, y[i] + 0.1, label, ha='left', va='bottom')
43
+ plt.text(
44
+ df1_model_data - 0.005, df2_model_data, m_name, horizontalalignment="right", verticalalignment="center"
45
+ )
46
 
47
  # add correlation line to scatter plot
48
  # first, compute correlation
49
+ corr = df1["average"].corr(df2["average"])
50
  # add correlation line based on corr
 
 
51
 
52
+ plt.xlabel("HERM Eval. Set Avg.", fontsize=16)
53
+ plt.ylabel("Pref. Test Sets Avg.", fontsize=16)
54
  # plt.legend(title='Model', bbox_to_anchor=(1.05, 1), loc='upper left')
55
+ return plt
src/populate.py DELETED
@@ -1,58 +0,0 @@
1
- import json
2
- import os
3
-
4
- import pandas as pd
5
-
6
- from src.display.formatting import has_no_nan_values, make_clickable_model
7
- from src.display.utils import AutoEvalColumn, EvalQueueColumn
8
- from src.leaderboard.read_evals import get_raw_eval_results
9
-
10
-
11
- def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
12
- """Creates a dataframe from all the individual experiment results"""
13
- raw_data = get_raw_eval_results(results_path, requests_path)
14
- all_data_json = [v.to_dict() for v in raw_data]
15
-
16
- df = pd.DataFrame.from_records(all_data_json)
17
- df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
18
- df = df[cols].round(decimals=2)
19
-
20
- # filter out if any of the benchmarks have not been produced
21
- df = df[has_no_nan_values(df, benchmark_cols)]
22
- return df
23
-
24
-
25
- def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
26
- """Creates the different dataframes for the evaluation queues requestes"""
27
- entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
28
- all_evals = []
29
-
30
- for entry in entries:
31
- if ".json" in entry:
32
- file_path = os.path.join(save_path, entry)
33
- with open(file_path) as fp:
34
- data = json.load(fp)
35
-
36
- data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
37
- data[EvalQueueColumn.revision.name] = data.get("revision", "main")
38
-
39
- all_evals.append(data)
40
- elif ".md" not in entry:
41
- # this is a folder
42
- sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")]
43
- for sub_entry in sub_entries:
44
- file_path = os.path.join(save_path, entry, sub_entry)
45
- with open(file_path) as fp:
46
- data = json.load(fp)
47
-
48
- data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
49
- data[EvalQueueColumn.revision.name] = data.get("revision", "main")
50
- all_evals.append(data)
51
-
52
- pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
53
- running_list = [e for e in all_evals if e["status"] == "RUNNING"]
54
- finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
55
- df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
56
- df_running = pd.DataFrame.from_records(running_list, columns=cols)
57
- df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
58
- return df_finished[cols], df_running[cols], df_pending[cols]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/submission/check_validity.py DELETED
@@ -1,99 +0,0 @@
1
- import json
2
- import os
3
- import re
4
- from collections import defaultdict
5
- from datetime import datetime, timedelta, timezone
6
-
7
- import huggingface_hub
8
- from huggingface_hub import ModelCard
9
- from huggingface_hub.hf_api import ModelInfo
10
- from transformers import AutoConfig
11
- from transformers.models.auto.tokenization_auto import AutoTokenizer
12
-
13
- def check_model_card(repo_id: str) -> tuple[bool, str]:
14
- """Checks if the model card and license exist and have been filled"""
15
- try:
16
- card = ModelCard.load(repo_id)
17
- except huggingface_hub.utils.EntryNotFoundError:
18
- return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
19
-
20
- # Enforce license metadata
21
- if card.data.license is None:
22
- if not ("license_name" in card.data and "license_link" in card.data):
23
- return False, (
24
- "License not found. Please add a license to your model card using the `license` metadata or a"
25
- " `license_name`/`license_link` pair."
26
- )
27
-
28
- # Enforce card content
29
- if len(card.text) < 200:
30
- return False, "Please add a description to your model card, it is too short."
31
-
32
- return True, ""
33
-
34
- def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
35
- """Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
36
- try:
37
- config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
38
- if test_tokenizer:
39
- try:
40
- tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
41
- except ValueError as e:
42
- return (
43
- False,
44
- f"uses a tokenizer which is not in a transformers release: {e}",
45
- None
46
- )
47
- except Exception as e:
48
- return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
49
- return True, None, config
50
-
51
- except ValueError:
52
- return (
53
- False,
54
- "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
55
- None
56
- )
57
-
58
- except Exception as e:
59
- return False, "was not found on hub!", None
60
-
61
-
62
- def get_model_size(model_info: ModelInfo, precision: str):
63
- """Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
64
- try:
65
- model_size = round(model_info.safetensors["total"] / 1e9, 3)
66
- except (AttributeError, TypeError):
67
- return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
68
-
69
- size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
70
- model_size = size_factor * model_size
71
- return model_size
72
-
73
- def get_model_arch(model_info: ModelInfo):
74
- """Gets the model architecture from the configuration"""
75
- return model_info.config.get("architectures", "Unknown")
76
-
77
- def already_submitted_models(requested_models_dir: str) -> set[str]:
78
- """Gather a list of already submitted models to avoid duplicates"""
79
- depth = 1
80
- file_names = []
81
- users_to_submission_dates = defaultdict(list)
82
-
83
- for root, _, files in os.walk(requested_models_dir):
84
- current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
85
- if current_depth == depth:
86
- for file in files:
87
- if not file.endswith(".json"):
88
- continue
89
- with open(os.path.join(root, file), "r") as f:
90
- info = json.load(f)
91
- file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
92
-
93
- # Select organisation
94
- if info["model"].count("/") == 0 or "submitted_time" not in info:
95
- continue
96
- organisation, _ = info["model"].split("/")
97
- users_to_submission_dates[organisation].append(info["submitted_time"])
98
-
99
- return set(file_names), users_to_submission_dates
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/submission/submit.py DELETED
@@ -1,119 +0,0 @@
1
- import json
2
- import os
3
- from datetime import datetime, timezone
4
-
5
- from src.display.formatting import styled_error, styled_message, styled_warning
6
- from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
7
- from src.submission.check_validity import (
8
- already_submitted_models,
9
- check_model_card,
10
- get_model_size,
11
- is_model_on_hub,
12
- )
13
-
14
- REQUESTED_MODELS = None
15
- USERS_TO_SUBMISSION_DATES = None
16
-
17
- def add_new_eval(
18
- model: str,
19
- base_model: str,
20
- revision: str,
21
- precision: str,
22
- weight_type: str,
23
- model_type: str,
24
- ):
25
- global REQUESTED_MODELS
26
- global USERS_TO_SUBMISSION_DATES
27
- if not REQUESTED_MODELS:
28
- REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
29
-
30
- user_name = ""
31
- model_path = model
32
- if "/" in model:
33
- user_name = model.split("/")[0]
34
- model_path = model.split("/")[1]
35
-
36
- precision = precision.split(" ")[0]
37
- current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
38
-
39
- if model_type is None or model_type == "":
40
- return styled_error("Please select a model type.")
41
-
42
- # Does the model actually exist?
43
- if revision == "":
44
- revision = "main"
45
-
46
- # Is the model on the hub?
47
- if weight_type in ["Delta", "Adapter"]:
48
- base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
49
- if not base_model_on_hub:
50
- return styled_error(f'Base model "{base_model}" {error}')
51
-
52
- if not weight_type == "Adapter":
53
- model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
54
- if not model_on_hub:
55
- return styled_error(f'Model "{model}" {error}')
56
-
57
- # Is the model info correctly filled?
58
- try:
59
- model_info = API.model_info(repo_id=model, revision=revision)
60
- except Exception:
61
- return styled_error("Could not get your model information. Please fill it up properly.")
62
-
63
- model_size = get_model_size(model_info=model_info, precision=precision)
64
-
65
- # Were the model card and license filled?
66
- try:
67
- license = model_info.cardData["license"]
68
- except Exception:
69
- return styled_error("Please select a license for your model")
70
-
71
- modelcard_OK, error_msg = check_model_card(model)
72
- if not modelcard_OK:
73
- return styled_error(error_msg)
74
-
75
- # Seems good, creating the eval
76
- print("Adding new eval")
77
-
78
- eval_entry = {
79
- "model": model,
80
- "base_model": base_model,
81
- "revision": revision,
82
- "precision": precision,
83
- "weight_type": weight_type,
84
- "status": "PENDING",
85
- "submitted_time": current_time,
86
- "model_type": model_type,
87
- "likes": model_info.likes,
88
- "params": model_size,
89
- "license": license,
90
- "private": False,
91
- }
92
-
93
- # Check for duplicate submission
94
- if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
95
- return styled_warning("This model has been already submitted.")
96
-
97
- print("Creating eval file")
98
- OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
99
- os.makedirs(OUT_DIR, exist_ok=True)
100
- out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
101
-
102
- with open(out_path, "w") as f:
103
- f.write(json.dumps(eval_entry))
104
-
105
- print("Uploading eval file")
106
- API.upload_file(
107
- path_or_fileobj=out_path,
108
- path_in_repo=out_path.split("eval-queue/")[1],
109
- repo_id=QUEUE_REPO,
110
- repo_type="dataset",
111
- commit_message=f"Add {model} to eval queue",
112
- )
113
-
114
- # Remove the local file
115
- os.remove(out_path)
116
-
117
- return styled_message(
118
- "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
119
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/utils.py CHANGED
@@ -1,9 +1,10 @@
1
- import pandas as pd
2
- from pathlib import Path
3
- from datasets import load_dataset
4
- import numpy as np
5
  import os
6
  import re
 
 
 
 
 
7
 
8
  UNVERIFIED_MODELS = [
9
  "nvidia/Nemotron-4-340B-Reward",
@@ -35,9 +36,10 @@ CONTAMINATED_MODELS = [
35
  "SF-Foundation/TextEval-Llama3.1-70B",
36
  "ZiyiYe/Con-J-Qwen2-7B",
37
  "Ray2333/Gemma-2B-rewardmodel-ft",
38
- "Ray2333/GRM-Gemma-2B-rewardmodel-ft"
39
  ]
40
 
 
41
  # From Open LLM Leaderboard
42
  def model_hyperlink(link, model_name):
43
  # if model_name is above 50 characters, return first 47 characters and "..."
@@ -63,9 +65,10 @@ def model_hyperlink(link, model_name):
63
  output += " ⚠️"
64
  return output
65
 
 
66
  def undo_hyperlink(html_string):
67
  # Regex pattern to match content inside > and <
68
- pattern = r'>[^<]+<'
69
  match = re.search(pattern, html_string)
70
  if match:
71
  # Extract the matched text and remove leading '>' and trailing '<'
@@ -75,7 +78,7 @@ def undo_hyperlink(html_string):
75
 
76
 
77
  # Define a function to fetch and process data
78
- def load_all_data(data_repo, subdir:str, subsubsets=False): # use HF api to pull the git repo
79
  dir = Path(data_repo)
80
  data_dir = dir / subdir
81
  orgs = [d for d in os.listdir(data_dir) if os.path.isdir(os.path.join(data_dir, d))]
@@ -93,21 +96,20 @@ def load_all_data(data_repo, subdir:str, subsubsets=False): # use HF api to p
93
 
94
  # load all json data in the list models_results one by one to avoid not having the same entries
95
  for model in models_results:
96
- model_data = load_dataset("json", data_files=data_repo + subdir+ "/" + model, split="train")
97
  df2 = pd.DataFrame(model_data)
98
  # add to df
99
  df = pd.concat([df2, df])
100
 
101
-
102
  # remove chat_template comlumn
103
  df = df.drop(columns=["chat_template"])
104
 
105
  # sort columns alphabetically
106
  df = df.reindex(sorted(df.columns), axis=1)
107
-
108
  # move column "model" to the front
109
  cols = list(df.columns)
110
- cols.insert(0, cols.pop(cols.index('model')))
111
  df = df.loc[:, cols]
112
 
113
  # select all columns except "model"
@@ -123,7 +125,7 @@ def load_all_data(data_repo, subdir:str, subsubsets=False): # use HF api to p
123
  if "model_beaker" in cols:
124
  cols.remove("model_beaker")
125
  df = df.drop(columns=["model_beaker"])
126
-
127
  # remove column xstest (outdated data)
128
  # if xstest is a column
129
  if "xstest" in cols:
@@ -148,24 +150,24 @@ def load_all_data(data_repo, subdir:str, subsubsets=False): # use HF api to p
148
  df = df.drop(columns=["pku_safer"])
149
  cols.remove("pku_safer")
150
 
151
- # convert to score
152
- df[cols] = (df[cols]*100)
153
- avg = np.nanmean(df[cols].values,axis=1)
154
  # add average column
155
  df["average"] = avg
156
-
157
  # apply model_hyperlink function to column "model"
158
  df["model"] = df["model"].apply(lambda x: model_hyperlink(f"https://huggingface.co/{x}", x))
159
 
160
  # move average column to the second
161
  cols = list(df.columns)
162
- cols.insert(1, cols.pop(cols.index('average')))
163
  df = df.loc[:, cols]
164
 
165
  # move model_type column to first
166
  if "model_type" in cols:
167
  cols = list(df.columns)
168
- cols.insert(1, cols.pop(cols.index('model_type')))
169
  df = df.loc[:, cols]
170
 
171
  # remove models with DPO Ref. Free as type (future work)
 
 
 
 
 
1
  import os
2
  import re
3
+ from pathlib import Path
4
+
5
+ import numpy as np
6
+ import pandas as pd
7
+ from datasets import load_dataset
8
 
9
  UNVERIFIED_MODELS = [
10
  "nvidia/Nemotron-4-340B-Reward",
 
36
  "SF-Foundation/TextEval-Llama3.1-70B",
37
  "ZiyiYe/Con-J-Qwen2-7B",
38
  "Ray2333/Gemma-2B-rewardmodel-ft",
39
+ "Ray2333/GRM-Gemma-2B-rewardmodel-ft",
40
  ]
41
 
42
+
43
  # From Open LLM Leaderboard
44
  def model_hyperlink(link, model_name):
45
  # if model_name is above 50 characters, return first 47 characters and "..."
 
65
  output += " ⚠️"
66
  return output
67
 
68
+
69
  def undo_hyperlink(html_string):
70
  # Regex pattern to match content inside > and <
71
+ pattern = r">[^<]+<"
72
  match = re.search(pattern, html_string)
73
  if match:
74
  # Extract the matched text and remove leading '>' and trailing '<'
 
78
 
79
 
80
  # Define a function to fetch and process data
81
+ def load_all_data(data_repo, subdir: str, subsubsets=False): # use HF api to pull the git repo
82
  dir = Path(data_repo)
83
  data_dir = dir / subdir
84
  orgs = [d for d in os.listdir(data_dir) if os.path.isdir(os.path.join(data_dir, d))]
 
96
 
97
  # load all json data in the list models_results one by one to avoid not having the same entries
98
  for model in models_results:
99
+ model_data = load_dataset("json", data_files=data_repo + subdir + "/" + model, split="train")
100
  df2 = pd.DataFrame(model_data)
101
  # add to df
102
  df = pd.concat([df2, df])
103
 
 
104
  # remove chat_template comlumn
105
  df = df.drop(columns=["chat_template"])
106
 
107
  # sort columns alphabetically
108
  df = df.reindex(sorted(df.columns), axis=1)
109
+
110
  # move column "model" to the front
111
  cols = list(df.columns)
112
+ cols.insert(0, cols.pop(cols.index("model")))
113
  df = df.loc[:, cols]
114
 
115
  # select all columns except "model"
 
125
  if "model_beaker" in cols:
126
  cols.remove("model_beaker")
127
  df = df.drop(columns=["model_beaker"])
128
+
129
  # remove column xstest (outdated data)
130
  # if xstest is a column
131
  if "xstest" in cols:
 
150
  df = df.drop(columns=["pku_safer"])
151
  cols.remove("pku_safer")
152
 
153
+ # convert to score
154
+ df[cols] = df[cols] * 100
155
+ avg = np.nanmean(df[cols].values, axis=1)
156
  # add average column
157
  df["average"] = avg
158
+
159
  # apply model_hyperlink function to column "model"
160
  df["model"] = df["model"].apply(lambda x: model_hyperlink(f"https://huggingface.co/{x}", x))
161
 
162
  # move average column to the second
163
  cols = list(df.columns)
164
+ cols.insert(1, cols.pop(cols.index("average")))
165
  df = df.loc[:, cols]
166
 
167
  # move model_type column to first
168
  if "model_type" in cols:
169
  cols = list(df.columns)
170
+ cols.insert(1, cols.pop(cols.index("model_type")))
171
  df = df.loc[:, cols]
172
 
173
  # remove models with DPO Ref. Free as type (future work)