Spaces:
Running
Running
root
commited on
Commit
·
99399ee
1
Parent(s):
6dd5c50
v2 update
Browse files- src/constants.py +60 -0
- src/css.py +22 -0
- src/logo.png +0 -0
- src/md.py +106 -0
- src/plt.py +53 -0
- src/utils.py +174 -0
src/constants.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# reference for length bias categories
|
2 |
+
length_categories = {
|
3 |
+
'alpacaeval-easy': 'True',
|
4 |
+
'alpacaeval-hard': 'True',
|
5 |
+
'alpacaeval-length': 'Neutral',
|
6 |
+
'donotanswer': 'False',
|
7 |
+
'hep-cpp': 'Neutral',
|
8 |
+
'hep-go': 'Neutral',
|
9 |
+
'hep-java': 'Neutral',
|
10 |
+
'hep-js': 'Neutral',
|
11 |
+
'hep-python': 'Neutral',
|
12 |
+
'hep-rust': 'Neutral',
|
13 |
+
'llmbar-adver-GPTInst': 'False',
|
14 |
+
'llmbar-adver-GPTOut': 'Neutral',
|
15 |
+
'llmbar-adver-manual': 'False',
|
16 |
+
'llmbar-adver-neighbor': 'False',
|
17 |
+
'llmbar-natural': 'Neutral',
|
18 |
+
'math-prm': 'Neutral',
|
19 |
+
'mt-bench-easy': 'False',
|
20 |
+
'mt-bench-hard': 'False',
|
21 |
+
'mt-bench-med': 'Neutral',
|
22 |
+
'refusals-dangerous': 'False',
|
23 |
+
'refusals-offensive': 'False',
|
24 |
+
'xstest-should-refuse': 'False',
|
25 |
+
'xstest-should-respond': 'True'
|
26 |
+
}
|
27 |
+
|
28 |
+
example_counts = {
|
29 |
+
"alpacaeval-easy": 100,
|
30 |
+
"alpacaeval-length": 95,
|
31 |
+
"alpacaeval-hard": 95,
|
32 |
+
"mt-bench-easy": 28,
|
33 |
+
"mt-bench-med": 40,
|
34 |
+
"mt-bench-hard": 37,
|
35 |
+
"math-prm": 984, # actual length 447, upweighting to be equal to code
|
36 |
+
"refusals-dangerous": 100,
|
37 |
+
"refusals-offensive": 100,
|
38 |
+
"llmbar-natural": 100,
|
39 |
+
"llmbar-adver-neighbor": 134,
|
40 |
+
"llmbar-adver-GPTInst": 92,
|
41 |
+
"llmbar-adver-GPTOut": 47,
|
42 |
+
"llmbar-adver-manual": 46,
|
43 |
+
"xstest-should-refuse": 154,
|
44 |
+
"xstest-should-respond": 250, # Note, refuse and respond were accidentally swapped until 9 Sept 2024
|
45 |
+
"donotanswer": 136,
|
46 |
+
"hep-cpp": 164,
|
47 |
+
"hep-go": 164,
|
48 |
+
"hep-java": 164,
|
49 |
+
"hep-js": 164,
|
50 |
+
"hep-python": 164,
|
51 |
+
"hep-rust": 164
|
52 |
+
}
|
53 |
+
|
54 |
+
# note, this order should match the dataframe.
|
55 |
+
subset_mapping = {
|
56 |
+
"Chat": ['alpacaeval-easy', 'alpacaeval-hard', 'alpacaeval-length', 'mt-bench-easy', 'mt-bench-med'],
|
57 |
+
"Chat Hard": ['llmbar-adver-GPTInst', 'llmbar-adver-GPTOut', 'llmbar-adver-manual', 'llmbar-adver-neighbor', 'llmbar-natural', 'mt-bench-hard'],
|
58 |
+
"Safety": ['donotanswer', 'refusals-dangerous', 'refusals-offensive', 'xstest-should-refuse', 'xstest-should-respond'],
|
59 |
+
"Reasoning": ["hep-cpp", "hep-go", "hep-java", "hep-js", "hep-python", "hep-rust", "math-prm"]
|
60 |
+
}
|
src/css.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_css = """
|
2 |
+
|
3 |
+
/* Full width space */
|
4 |
+
.gradio-container {
|
5 |
+
max-width: 95%;
|
6 |
+
}
|
7 |
+
|
8 |
+
/* Text tyle and margins */
|
9 |
+
.markdown-text {
|
10 |
+
font-size: 17px !important;
|
11 |
+
}
|
12 |
+
|
13 |
+
.tab-buttons button {
|
14 |
+
font-size: 20px;
|
15 |
+
}
|
16 |
+
|
17 |
+
h1 {
|
18 |
+
font-size: 32px !important;
|
19 |
+
margin-top: 0px !important;
|
20 |
+
}
|
21 |
+
|
22 |
+
"""
|
src/logo.png
ADDED
![]() |
src/md.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import datetime
|
2 |
+
import pytz
|
3 |
+
|
4 |
+
ABOUT_TEXT = """
|
5 |
+
We compute the win percentage for a reward model on hand curated chosen-rejected pairs for each prompt.
|
6 |
+
A win is when the score for the chosen response is higher than the score for the rejected response.
|
7 |
+
|
8 |
+
Note: Models with (*) after the model name are independently submitted model scores which have not been verified by the RewardBench team.
|
9 |
+
|
10 |
+
## Overview
|
11 |
+
|
12 |
+
We average over 4 core sections (per prompt weighting):
|
13 |
+
1. **Chat**: Includes the easy chat subsets (alpacaeval-easy, alpacaeval-length, alpacaeval-hard, mt-bench-easy, mt-bench-medium)
|
14 |
+
2. **Chat Hard**: Includes the hard chat subsets (mt-bench-hard, llmbar-natural, llmbar-adver-neighbor, llmbar-adver-GPTInst, llmbar-adver-GPTOut, llmbar-adver-manual)
|
15 |
+
3. **Safety**: Includes the safety subsets (refusals-dangerous, refusals-offensive, xstest-should-refuse, xstest-should-respond, do not answer)
|
16 |
+
4. **Reasoning**: Includes the code and math subsets (math-prm, hep-cpp, hep-go, hep-java, hep-js, hep-python, hep-rust)
|
17 |
+
|
18 |
+
For Reasoning, we increase the weight of the PRM-Math subset so code and math abilities are weighed equally in the final number, rather than increasing the relevance of code.
|
19 |
+
We add a final column, **Prior Sets** -- includes the test sets ([anthropic_helpful](https://huggingface.co/datasets/Anthropic/hh-rlhf), [anthropic_hhh](https://huggingface.co/datasets/HuggingFaceH4/hhh_alignment), [shp](https://huggingface.co/datasets/stanfordnlp/SHP), [summarize](https://huggingface.co/datasets/openai/summarize_from_feedback))
|
20 |
+
Prior sets is weighted 0.5x in the final score to avoid gamification by training on the available training sets of Anthropic HH, SHP, and Summarize.
|
21 |
+
|
22 |
+
Once all subsets weighted averages are achieved, the final RewardBench score is the average across the 5 subset scores.
|
23 |
+
|
24 |
+
|
25 |
+
We include multiple types of reward models in this evaluation:
|
26 |
+
1. **Sequence Classifiers** (Seq. Classifier): A model, normally trained with HuggingFace AutoModelForSequenceClassification, that takes in a prompt and a response and outputs a score.
|
27 |
+
2. **Custom Classifiers**: Research models with different architectures and training objectives to either take in two inputs at once or generate scores differently (e.g. PairRM and Stanford SteamSHP).
|
28 |
+
3. **DPO**: Models trained with Direct Preference Optimization (DPO), with modifiers such as `-ref-free` or `-norm` changing how scores are computed. *Note*: This also includes other models trained with implicit rewards, such as those trained with [KTO](https://arxiv.org/abs/2402.01306).
|
29 |
+
4. **Random**: Random choice baseline.
|
30 |
+
4. **Generative**: Prompting fine-tuned models to choose between two answers, similar to MT Bench and AlpacaEval.
|
31 |
+
|
32 |
+
All models are evaluated in fp16 expect for Starling-7B, which is evaluated in fp32.
|
33 |
+
*Note*: The reference models for DPO models (and other implicit rewards) can be found in two ways.
|
34 |
+
* Click on a specific model in results and you'll see a key `ref_model`, e.g. [Qwen](https://huggingface.co/datasets/allenai/reward-bench-results/blob/main/eval-set/Qwen/Qwen1.5-72B-Chat.json).
|
35 |
+
* All the reference models are listed in the [evaluation configs](https://github.com/allenai/reward-bench/blob/main/scripts/configs/eval_configs.yaml).
|
36 |
+
|
37 |
+
|
38 |
+
### Subset Details
|
39 |
+
|
40 |
+
Total number of the prompts is: 2985, filtered from 5123.
|
41 |
+
|
42 |
+
| Subset | Num. Samples (Pre-filtering, post-filtering) | Description |
|
43 |
+
| :---------- | :-----: | :---------: |
|
44 |
+
| alpacaeval-easy | 805, 100 | Great model vs poor model |
|
45 |
+
| alpacaeval-length | 805, 95 | Good model vs low model, equal length |
|
46 |
+
| alpacaeval-hard | 805, 95 | Great model vs baseline model |
|
47 |
+
| mt-bench-easy | 28, 28 | MT Bench 10s vs 1s |
|
48 |
+
| mt-bench-medium | 45, 40 | MT Bench 9s vs 2-5s |
|
49 |
+
| mt-bench-hard | 45, 37 | MT Bench 7-8 vs 5-6 |
|
50 |
+
| refusals-dangerous | 505, 100 | Dangerous response vs no response |
|
51 |
+
| refusals-offensive | 704, 100 | Offensive response vs no response |
|
52 |
+
| llmbar-natural | 100 | (See [paper](https://arxiv.org/abs/2310.07641)) Manually curated instruction pairs |
|
53 |
+
| llmbar-adver-neighbor | 134 | (See [paper](https://arxiv.org/abs/2310.07641)) Instruction response vs. off-topic prompt response |
|
54 |
+
| llmbar-adver-GPTInst | 92 | (See [paper](https://arxiv.org/abs/2310.07641)) Instruction response vs. GPT4 generated off-topic prompt response |
|
55 |
+
| llmbar-adver-GPTOut | 47 | (See [paper](https://arxiv.org/abs/2310.07641)) Instruction response vs. unhelpful-prompted GPT4 responses |
|
56 |
+
| llmbar-adver-manual | 46 | (See [paper](https://arxiv.org/abs/2310.07641)) Challenge set chosen vs. rejected |
|
57 |
+
| xstest-should-refuse | 450, 154 | False response dataset (see [paper](https://arxiv.org/abs/2308.01263)) |
|
58 |
+
| xstest-should-respond | 450, 250 | False refusal dataset (see [paper](https://arxiv.org/abs/2308.01263)) |
|
59 |
+
| do not answer | 939, 136 | [Prompts which responsible LLMs do not answer](https://huggingface.co/datasets/LibrAI/do-not-answer) |
|
60 |
+
| math-prm | 447 | Human references vs. model error from OpenAI's Let's Verify Step by Step |
|
61 |
+
| hep-cpp | 164 | C++ code revisions (See [dataset](https://huggingface.co/datasets/bigcode/humanevalpack) or [paper](https://arxiv.org/abs/2308.07124)) |
|
62 |
+
| hep-go | 164 | Go code |
|
63 |
+
| hep-java | 164 | Java code |
|
64 |
+
| hep-js | 164 | Javascript code |
|
65 |
+
| hep-python | 164 | Python code |
|
66 |
+
| hep-rust | 164 | Rust code |
|
67 |
+
|
68 |
+
Lengths (mean, std. dev.) include the prompt
|
69 |
+
|
70 |
+
| subset | length bias | chosen_chars | rejected_chars | chosen_tokens | rejected_tokens | chosen_unique_tokens | rejected_unique_tokens |
|
71 |
+
|-----------------------|-------------|----------------|------------------|-----------------|-------------------|------------------------|--------------------------|
|
72 |
+
| alpacaeval-easy | True | 2283 (1138) | 646 (482) | 591 (303) | 167 (139) | 253 (117) | 83 (46) |
|
73 |
+
| alpacaeval-hard | True | 1590 (769) | 526 (430) | 412 (199) | 137 (117) | 173 (67) | 71 (48) |
|
74 |
+
| alpacaeval-length | Neutral | 2001 (1137) | 2127 (1787) | 511 (283) | 597 (530) | 192 (85) | 189 (99) |
|
75 |
+
| donotanswer | False | 755 (722) | 1389 (695) | 170 (161) | 320 (164) | 104 (82) | 157 (73) |
|
76 |
+
| hep-cpp | Neutral | 709 (341) | 705 (342) | 261 (125) | 259 (125) | 100 (29) | 99 (29) |
|
77 |
+
| hep-go | Neutral | 738 (361) | 734 (361) | 266 (118) | 265 (118) | 100 (29) | 99 (29) |
|
78 |
+
| hep-java | Neutral | 821 (393) | 814 (390) | 263 (123) | 261 (122) | 102 (30) | 102 (30) |
|
79 |
+
| hep-js | Neutral | 677 (341) | 673 (339) | 251 (129) | 250 (128) | 93 (29) | 93 (29) |
|
80 |
+
| hep-python | Neutral | 618 (301) | 616 (300) | 212 (98) | 211 (98) | 86 (26) | 85 (26) |
|
81 |
+
| hep-rust | Neutral | 666 (391) | 660 (391) | 221 (132) | 219 (132) | 95 (29) | 95 (29) |
|
82 |
+
| llmbar-adver-GPTInst | False | 735 (578) | 1623 (1055) | 170 (135) | 377 (245) | 93 (59) | 179 (106) |
|
83 |
+
| llmbar-adver-GPTOut | Neutral | 378 (339) | 359 (319) | 96 (81) | 101 (94) | 60 (45) | 55 (41) |
|
84 |
+
| llmbar-adver-manual | False | 666 (584) | 1139 (866) | 160 (134) | 264 (194) | 92 (63) | 140 (90) |
|
85 |
+
| llmbar-adver-neighbor | False | 287 (297) | 712 (749) | 70 (76) | 173 (175) | 43 (31) | 91 (70) |
|
86 |
+
| llmbar-natural | Neutral | 553 (644) | 530 (597) | 139 (162) | 130 (140) | 75 (71) | 70 (62) |
|
87 |
+
| mt-bench-easy | False | 1563 (720) | 2129 (1520) | 377 (159) | 551 (415) | 166 (55) | 116 (62) |
|
88 |
+
| mt-bench-hard | False | 1225 (499) | 1471 (1016) | 284 (116) | 349 (234) | 131 (45) | 136 (58) |
|
89 |
+
| mt-bench-med | Neutral | 1558 (729) | 1733 (1312) | 377 (170) | 410 (311) | 162 (58) | 145 (88) |
|
90 |
+
| refusals-dangerous | False | 597 (81) | 1828 (547) | 131 (20) | 459 (136) | 90 (12) | 211 (50) |
|
91 |
+
| refusals-offensive | False | 365 (116) | 1092 (1146) | 82 (25) | 299 (278) | 64 (15) | 134 (101) |
|
92 |
+
| xstest-should-refuse | False | 584 (419) | 904 (493) | 129 (89) | 217 (115) | 81 (47) | 116 (53) |
|
93 |
+
| xstest-should-respond | True | 771 (420) | 466 (427) | 189 (105) | 107 (94) | 104 (48) | 67 (48) |
|
94 |
+
|
95 |
+
For more details, see the [dataset](https://huggingface.co/datasets/allenai/reward-bench).
|
96 |
+
"""
|
97 |
+
|
98 |
+
# Get Pacific time zone (handles PST/PDT automatically)
|
99 |
+
pacific_tz = pytz.timezone('America/Los_Angeles')
|
100 |
+
current_time = datetime.now(pacific_tz).strftime("%H:%M %Z, %d %b %Y")
|
101 |
+
|
102 |
+
TOP_TEXT = f"""# RewardBench: Evaluating Reward Models
|
103 |
+
### Evaluating the capabilities, safety, and pitfalls of reward models
|
104 |
+
[Code](https://github.com/allenai/reward-bench) | [Eval. Dataset](https://huggingface.co/datasets/allenai/reward-bench) | [Prior Test Sets](https://huggingface.co/datasets/allenai/pref-test-sets) | [Results](https://huggingface.co/datasets/allenai/reward-bench-results) | [Paper](https://arxiv.org/abs/2403.13787) | Total models: {{}} | * Unverified models | ⚠️ Dataset Contamination | Last restart (PST): {current_time}
|
105 |
+
|
106 |
+
⚠️ Many of the top models were trained on unintentionally contaminated, AI-generated data, for more information, see this [gist](https://gist.github.com/natolambert/1aed306000c13e0e8c5bc17c1a5dd300)."""
|
src/plt.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib.pyplot as plt
|
2 |
+
import pandas as pd
|
3 |
+
from .utils import undo_hyperlink
|
4 |
+
|
5 |
+
def plot_avg_correlation(df1, df2):
|
6 |
+
"""
|
7 |
+
Plots the "average" column for each unique model that appears in both dataframes.
|
8 |
+
|
9 |
+
Parameters:
|
10 |
+
- df1: pandas DataFrame containing columns "model" and "average".
|
11 |
+
- df2: pandas DataFrame containing columns "model" and "average".
|
12 |
+
"""
|
13 |
+
# Identify the unique models that appear in both DataFrames
|
14 |
+
common_models = pd.Series(list(set(df1['model']) & set(df2['model'])))
|
15 |
+
|
16 |
+
# Set up the plot
|
17 |
+
plt.figure(figsize=(13, 6), constrained_layout=True)
|
18 |
+
|
19 |
+
# axes from 0 to 1 for x and y
|
20 |
+
plt.xlim(0.475, 0.8)
|
21 |
+
plt.ylim(0.475, 0.8)
|
22 |
+
|
23 |
+
# larger font (16)
|
24 |
+
plt.rcParams.update({'font.size': 12, 'axes.labelsize': 14,'axes.titlesize': 14})
|
25 |
+
# plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1)
|
26 |
+
# plt.tight_layout()
|
27 |
+
# plt.margins(0,0)
|
28 |
+
|
29 |
+
for model in common_models:
|
30 |
+
# Filter data for the current model
|
31 |
+
df1_model_data = df1[df1['model'] == model]['average'].values
|
32 |
+
df2_model_data = df2[df2['model'] == model]['average'].values
|
33 |
+
|
34 |
+
# Plotting
|
35 |
+
plt.scatter(df1_model_data, df2_model_data, label=model)
|
36 |
+
m_name = undo_hyperlink(model)
|
37 |
+
if m_name == "No text found":
|
38 |
+
m_name = "Random"
|
39 |
+
# Add text above each point like
|
40 |
+
# plt.text(x[i] + 0.1, y[i] + 0.1, label, ha='left', va='bottom')
|
41 |
+
plt.text(df1_model_data - .005, df2_model_data, m_name, horizontalalignment='right', verticalalignment='center')
|
42 |
+
|
43 |
+
# add correlation line to scatter plot
|
44 |
+
# first, compute correlation
|
45 |
+
corr = df1['average'].corr(df2['average'])
|
46 |
+
# add correlation line based on corr
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
plt.xlabel('HERM Eval. Set Avg.', fontsize=16)
|
51 |
+
plt.ylabel('Pref. Test Sets Avg.', fontsize=16)
|
52 |
+
# plt.legend(title='Model', bbox_to_anchor=(1.05, 1), loc='upper left')
|
53 |
+
return plt
|
src/utils.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from pathlib import Path
|
3 |
+
from datasets import load_dataset
|
4 |
+
import numpy as np
|
5 |
+
import os
|
6 |
+
import re
|
7 |
+
|
8 |
+
UNVERIFIED_MODELS = [
|
9 |
+
"nvidia/Nemotron-4-340B-Reward",
|
10 |
+
"nvidia/Llama3-70B-SteerLM-RM",
|
11 |
+
"Cohere May 2024",
|
12 |
+
"google/gemini-1.5-pro-0514",
|
13 |
+
"google/flame-24b-july-2024",
|
14 |
+
"Cohere March 2024",
|
15 |
+
"facebook/Self-taught-Llama-3-70B",
|
16 |
+
"facebook/Self-taught-evaluator-llama3.1-70B",
|
17 |
+
"google/flame-1.0-24B-july-2024",
|
18 |
+
"Salesforce/SFR-LLaMa-3.1-70B-Judge-r",
|
19 |
+
"Salesforce/SFR-nemo-12B-Judge-r",
|
20 |
+
"Salesforce/SFR-LLaMa-3.1-8B-Judge-r",
|
21 |
+
"SF-Foundation/TextEval-OffsetBias-12B",
|
22 |
+
"SF-Foundation/TextEval-Llama3.1-70B",
|
23 |
+
"nvidia/Llama-3.1-Nemotron-70B-Reward",
|
24 |
+
]
|
25 |
+
|
26 |
+
CONTAMINATED_MODELS = [
|
27 |
+
"Skywork/Skywork-Reward-Gemma-2-27B",
|
28 |
+
"Skywork/Skywork-Critic-Llama-3.1-70B",
|
29 |
+
"LxzGordon/URM-LLaMa-3.1-8B",
|
30 |
+
"Skywork/Skywork-Reward-Llama-3.1-8B",
|
31 |
+
"Ray2333/GRM-Llama3-8B-rewardmodel-ft",
|
32 |
+
"nicolinho/QRM-Llama3.1-8B",
|
33 |
+
"nicolinho/QRM-Llama3-8B",
|
34 |
+
"general-preference/GPM-Llama-3.1-8B",
|
35 |
+
"SF-Foundation/TextEval-Llama3.1-70B",
|
36 |
+
"ZiyiYe/Con-J-Qwen2-7B",
|
37 |
+
"Ray2333/Gemma-2B-rewardmodel-ft",
|
38 |
+
"Ray2333/GRM-Gemma-2B-rewardmodel-ft"
|
39 |
+
]
|
40 |
+
|
41 |
+
# From Open LLM Leaderboard
|
42 |
+
def model_hyperlink(link, model_name):
|
43 |
+
# if model_name is above 50 characters, return first 47 characters and "..."
|
44 |
+
if len(model_name) > 50:
|
45 |
+
model_name = model_name[:47] + "..."
|
46 |
+
if model_name == "random":
|
47 |
+
output = "random"
|
48 |
+
elif model_name == "Cohere March 2024":
|
49 |
+
output = f'<a target="_blank" href="https://huggingface.co/Cohere" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
50 |
+
elif "openai" == model_name.split("/")[0]:
|
51 |
+
output = f'<a target="_blank" href="https://huggingface.co/openai" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
52 |
+
elif "Anthropic" == model_name.split("/")[0]:
|
53 |
+
output = f'<a target="_blank" href="https://huggingface.co/Anthropic" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
54 |
+
elif "google" == model_name.split("/")[0]:
|
55 |
+
output = f'<a target="_blank" href="https://huggingface.co/google" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
56 |
+
elif "PoLL" == model_name.split("/")[0]:
|
57 |
+
output = model_name
|
58 |
+
output = f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
59 |
+
|
60 |
+
if model_name in UNVERIFIED_MODELS:
|
61 |
+
output += " *"
|
62 |
+
if model_name in CONTAMINATED_MODELS:
|
63 |
+
output += " ⚠️"
|
64 |
+
return output
|
65 |
+
|
66 |
+
def undo_hyperlink(html_string):
|
67 |
+
# Regex pattern to match content inside > and <
|
68 |
+
pattern = r'>[^<]+<'
|
69 |
+
match = re.search(pattern, html_string)
|
70 |
+
if match:
|
71 |
+
# Extract the matched text and remove leading '>' and trailing '<'
|
72 |
+
return match.group(0)[1:-1]
|
73 |
+
else:
|
74 |
+
return "No text found"
|
75 |
+
|
76 |
+
|
77 |
+
# Define a function to fetch and process data
|
78 |
+
def load_all_data(data_repo, subdir:str, subsubsets=False): # use HF api to pull the git repo
|
79 |
+
dir = Path(data_repo)
|
80 |
+
data_dir = dir / subdir
|
81 |
+
orgs = [d for d in os.listdir(data_dir) if os.path.isdir(os.path.join(data_dir, d))]
|
82 |
+
# get all files within the sub folders orgs
|
83 |
+
models_results = []
|
84 |
+
for org in orgs:
|
85 |
+
org_dir = data_dir / org
|
86 |
+
files = [f for f in os.listdir(org_dir) if os.path.isfile(os.path.join(org_dir, f))]
|
87 |
+
for file in files:
|
88 |
+
if file.endswith(".json"):
|
89 |
+
models_results.append(org + "/" + file)
|
90 |
+
|
91 |
+
# create empty dataframe to add all data to
|
92 |
+
df = pd.DataFrame()
|
93 |
+
|
94 |
+
# load all json data in the list models_results one by one to avoid not having the same entries
|
95 |
+
for model in models_results:
|
96 |
+
model_data = load_dataset("json", data_files=data_repo + subdir+ "/" + model, split="train")
|
97 |
+
df2 = pd.DataFrame(model_data)
|
98 |
+
# add to df
|
99 |
+
df = pd.concat([df2, df])
|
100 |
+
|
101 |
+
|
102 |
+
# remove chat_template comlumn
|
103 |
+
df = df.drop(columns=["chat_template"])
|
104 |
+
|
105 |
+
# sort columns alphabetically
|
106 |
+
df = df.reindex(sorted(df.columns), axis=1)
|
107 |
+
|
108 |
+
# move column "model" to the front
|
109 |
+
cols = list(df.columns)
|
110 |
+
cols.insert(0, cols.pop(cols.index('model')))
|
111 |
+
df = df.loc[:, cols]
|
112 |
+
|
113 |
+
# select all columns except "model"
|
114 |
+
cols = df.columns.tolist()
|
115 |
+
cols.remove("model")
|
116 |
+
# if model_type is a column (pref tests may not have it)
|
117 |
+
if "model_type" in cols:
|
118 |
+
cols.remove("model_type")
|
119 |
+
# remove ref_model if in columns
|
120 |
+
if "ref_model" in cols:
|
121 |
+
cols.remove("ref_model")
|
122 |
+
# remove model_beaker from dataframe
|
123 |
+
if "model_beaker" in cols:
|
124 |
+
cols.remove("model_beaker")
|
125 |
+
df = df.drop(columns=["model_beaker"])
|
126 |
+
|
127 |
+
# remove column xstest (outdated data)
|
128 |
+
# if xstest is a column
|
129 |
+
if "xstest" in cols:
|
130 |
+
df = df.drop(columns=["xstest"])
|
131 |
+
cols.remove("xstest")
|
132 |
+
|
133 |
+
if "ref_model" in df.columns:
|
134 |
+
df = df.drop(columns=["ref_model"])
|
135 |
+
|
136 |
+
# remove column anthropic and summarize_prompted (outdated data)
|
137 |
+
if "anthropic" in cols:
|
138 |
+
df = df.drop(columns=["anthropic"])
|
139 |
+
cols.remove("anthropic")
|
140 |
+
if "summarize_prompted" in cols:
|
141 |
+
df = df.drop(columns=["summarize_prompted"])
|
142 |
+
cols.remove("summarize_prompted")
|
143 |
+
# remove pku_better and pku_safer (removed from the leaderboard)
|
144 |
+
if "pku_better" in cols:
|
145 |
+
df = df.drop(columns=["pku_better"])
|
146 |
+
cols.remove("pku_better")
|
147 |
+
if "pku_safer" in cols:
|
148 |
+
df = df.drop(columns=["pku_safer"])
|
149 |
+
cols.remove("pku_safer")
|
150 |
+
|
151 |
+
# convert to score
|
152 |
+
df[cols] = (df[cols]*100)
|
153 |
+
avg = np.nanmean(df[cols].values,axis=1)
|
154 |
+
# add average column
|
155 |
+
df["average"] = avg
|
156 |
+
|
157 |
+
# apply model_hyperlink function to column "model"
|
158 |
+
df["model"] = df["model"].apply(lambda x: model_hyperlink(f"https://huggingface.co/{x}", x))
|
159 |
+
|
160 |
+
# move average column to the second
|
161 |
+
cols = list(df.columns)
|
162 |
+
cols.insert(1, cols.pop(cols.index('average')))
|
163 |
+
df = df.loc[:, cols]
|
164 |
+
|
165 |
+
# move model_type column to first
|
166 |
+
if "model_type" in cols:
|
167 |
+
cols = list(df.columns)
|
168 |
+
cols.insert(1, cols.pop(cols.index('model_type')))
|
169 |
+
df = df.loc[:, cols]
|
170 |
+
|
171 |
+
# remove models with DPO Ref. Free as type (future work)
|
172 |
+
df = df[~df["model_type"].str.contains("DPO Ref. Free", na=False)]
|
173 |
+
|
174 |
+
return df
|