Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import tempfile
|
| 3 |
-
from TTS.utils.synthesizer import Synthesizer
|
| 4 |
from TTS.api import TTS
|
| 5 |
from huggingface_hub import hf_hub_download
|
| 6 |
import torch
|
|
@@ -9,70 +8,64 @@ CUDA = torch.cuda.is_available()
|
|
| 9 |
|
| 10 |
REPO_ID = "collectivat/catotron-ona"
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
my_title = "Catotron Text-to-Speech"
|
| 13 |
my_description = "This model is based on Fast Speech implemented in 馃惛 [Coqui.ai](https://coqui.ai/)."
|
| 14 |
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
best_model_path = hf_hub_download(repo_id=REPO_ID, filename="fast-speech_best_model.pth")
|
| 17 |
config_path = hf_hub_download(repo_id=REPO_ID, filename="fast-speech_config.json")
|
| 18 |
vocoder_model = hf_hub_download(repo_id=REPO_ID, filename="ljspeech--hifigan_v2_model_file.pth")
|
| 19 |
vocoder_config = hf_hub_download(repo_id=REPO_ID, filename="ljspeech--hifigan_v2_config.json")
|
| 20 |
|
| 21 |
-
|
| 22 |
-
synthesizer = Synthesizer(
|
| 23 |
-
tts_checkpoint=best_model_path,
|
| 24 |
-
tts_config_path=config_path,
|
| 25 |
-
tts_speakers_file=None,
|
| 26 |
-
tts_languages_file=None,
|
| 27 |
-
vocoder_checkpoint=vocoder_model,
|
| 28 |
-
vocoder_config=vocoder_config,
|
| 29 |
-
encoder_checkpoint="",
|
| 30 |
-
encoder_config="",
|
| 31 |
-
use_cuda=CUDA
|
| 32 |
-
)
|
| 33 |
|
| 34 |
-
#
|
| 35 |
-
|
|
|
|
| 36 |
|
| 37 |
-
def tts(text, split_sentences, speaker_wav):
|
|
|
|
| 38 |
text = text.replace("\n", ". ")
|
| 39 |
text = text.replace("(", ",")
|
| 40 |
text = text.replace(")", ",")
|
| 41 |
text = text.replace(";", ",")
|
| 42 |
|
| 43 |
-
# Generate with Catotron
|
| 44 |
-
wavs = synthesizer.tts(text, split_sentences=split_sentences)
|
| 45 |
-
|
| 46 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp_out:
|
| 53 |
-
vc_model.voice_conversion_to_file(source_wav=temp_catotron, target_wav=speaker_wav, file_path=fp_out.name)
|
| 54 |
-
return fp_out.name
|
| 55 |
-
|
| 56 |
-
return temp_catotron
|
| 57 |
|
| 58 |
-
|
| 59 |
-
gr.Markdown(f"# {my_title}")
|
| 60 |
-
gr.Markdown(my_description)
|
| 61 |
-
|
| 62 |
-
with gr.Row():
|
| 63 |
-
with gr.Column():
|
| 64 |
-
text_input = gr.Textbox(lines=5, label="Input Text")
|
| 65 |
-
split_check = gr.Checkbox(label="Split Sentences", value=True)
|
| 66 |
-
speaker_audio = gr.Audio(label="Speaker audio for voice cloning (optional)", type="filepath")
|
| 67 |
-
submit_btn = gr.Button("Generate")
|
| 68 |
-
|
| 69 |
-
with gr.Column():
|
| 70 |
-
audio_output = gr.Audio(label="Output Audio", type="filepath")
|
| 71 |
-
|
| 72 |
-
submit_btn.click(
|
| 73 |
-
fn=tts,
|
| 74 |
-
inputs=[text_input, split_check, speaker_audio],
|
| 75 |
-
outputs=audio_output
|
| 76 |
-
)
|
| 77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
iface.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import tempfile
|
|
|
|
| 3 |
from TTS.api import TTS
|
| 4 |
from huggingface_hub import hf_hub_download
|
| 5 |
import torch
|
|
|
|
| 8 |
|
| 9 |
REPO_ID = "collectivat/catotron-ona"
|
| 10 |
|
| 11 |
+
VOICE_CONVERSION_MODELS = {
|
| 12 |
+
'freevc24': 'voice_conversion_models/multilingual/vctk/freevc24',
|
| 13 |
+
'openvoice_v1': 'voice_conversion_models/multilingual/multi-dataset/openvoice_v1',
|
| 14 |
+
'openvoice_v2': 'voice_conversion_models/multilingual/multi-dataset/openvoice_v2',
|
| 15 |
+
}
|
| 16 |
+
|
| 17 |
my_title = "Catotron Text-to-Speech"
|
| 18 |
my_description = "This model is based on Fast Speech implemented in 馃惛 [Coqui.ai](https://coqui.ai/)."
|
| 19 |
|
| 20 |
+
my_examples = [
|
| 21 |
+
["Catotron, s铆ntesi de la parla obert i lliure en catal脿.", True, None, 'freevc24'],
|
| 22 |
+
["Leonor Ferrer Girabau va ser una delineant, mestra i activista barcelonina, nascuda al carrer actual de la Conc貌rdia del Poble-sec, que es va convertir en la primera dona a obtenir el t铆tol de delineant a Catalunya i a l'estat.", True, None, 'freevc24'],
|
| 23 |
+
["S'espera un dia anticicl貌nic amb temperatures suaus i vent fluix.", False, None, 'freevc24']
|
| 24 |
+
]
|
| 25 |
+
|
| 26 |
+
my_inputs = [
|
| 27 |
+
gr.Textbox(lines=5, label="Input Text"),
|
| 28 |
+
gr.Checkbox(label="Split Sentences", value=False),
|
| 29 |
+
gr.Audio(type="filepath", label="Speaker audio for voice cloning (optional)"),
|
| 30 |
+
gr.Dropdown(label="Voice Conversion Model", choices=list(VOICE_CONVERSION_MODELS.keys())),
|
| 31 |
+
]
|
| 32 |
+
|
| 33 |
+
my_outputs = gr.Audio(type="filepath", label="Output Audio", autoplay=True)
|
| 34 |
+
|
| 35 |
best_model_path = hf_hub_download(repo_id=REPO_ID, filename="fast-speech_best_model.pth")
|
| 36 |
config_path = hf_hub_download(repo_id=REPO_ID, filename="fast-speech_config.json")
|
| 37 |
vocoder_model = hf_hub_download(repo_id=REPO_ID, filename="ljspeech--hifigan_v2_model_file.pth")
|
| 38 |
vocoder_config = hf_hub_download(repo_id=REPO_ID, filename="ljspeech--hifigan_v2_config.json")
|
| 39 |
|
| 40 |
+
api = TTS(model_path=best_model_path, config_path=config_path, vocoder_path=vocoder_model, vocoder_config_path=vocoder_config).to("cuda" if CUDA else "cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
+
# pre-download voice conversion models
|
| 43 |
+
for model in VOICE_CONVERSION_MODELS.values():
|
| 44 |
+
api.load_vc_model_by_name(model, gpu=CUDA)
|
| 45 |
|
| 46 |
+
def tts(text: str, split_sentences: bool = False, speaker_wav: str = None, voice_cv_model: str = 'freevc24'):
|
| 47 |
+
# replace oov characters
|
| 48 |
text = text.replace("\n", ". ")
|
| 49 |
text = text.replace("(", ",")
|
| 50 |
text = text.replace(")", ",")
|
| 51 |
text = text.replace(";", ",")
|
| 52 |
|
|
|
|
|
|
|
|
|
|
| 53 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
|
| 54 |
+
if speaker_wav:
|
| 55 |
+
api.load_vc_model_by_name(VOICE_CONVERSION_MODELS[voice_cv_model], gpu=CUDA)
|
| 56 |
+
api.tts_with_vc_to_file(text, speaker_wav=speaker_wav, file_path=fp.name, split_sentences=split_sentences)
|
| 57 |
+
else:
|
| 58 |
+
api.tts_to_file(text, file_path=fp.name, split_sentences=split_sentences)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
+
return fp.name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
+
iface = gr.Interface(
|
| 63 |
+
fn=tts,
|
| 64 |
+
inputs=my_inputs,
|
| 65 |
+
outputs=my_outputs,
|
| 66 |
+
title=my_title,
|
| 67 |
+
description=my_description,
|
| 68 |
+
examples=my_examples,
|
| 69 |
+
cache_examples=True
|
| 70 |
+
)
|
| 71 |
iface.launch()
|